Publications by authors named "Conor Mullens"

Wounds sustained under battlefield conditions are considered to be contaminated and their initial treatment should focus on decreasing this contamination and thus reducing the possibility of infection. The early and aggressive administration of antimicrobial treatment starting with intervention on the battlefield has resulted in improved patient outcomes and is considered the standard of care. Chitosan microspheres (CSM) loaded with silver sulfadiazine (SSD) were developed via a novel water-in-oil emulsion technique to address this problem.

View Article and Find Full Text PDF

Concentrated animal feeding operations around the globe generate large amounts of nitrous oxide (N(2)O) in the surrounding atmosphere. Liquid animal waste systems have received little attention with respect to N(2)O emissions. We hypothesized that the solution chemistry of animal waste aqueous suspensions would promote conditions that lead to N(2)O supersaturation at the liquid/air interface.

View Article and Find Full Text PDF

Elevated lead (Pb) concentrations in residential houseyards around house walls painted with Pb-based pigments pose serious human health risks, especially to children. Vetiver grass (Vetiveria zizanioides L.) has shown promise for use in in situ Pb phytoremediation efforts.

View Article and Find Full Text PDF

Ethylenediamene tetraacetic acid (EDTA) has been used to mobilize soil lead (Pb) and enhance plant uptake for phytoremediation. Chelant bound Pb is considered less toxic compared to free Pb ions and hence might induce less stress on plants. Characterization of possible Pb complexes with phytochelatins (PCn, metal-binding peptides) and EDTA in plant tissues will enhance our understanding of Pb tolerance mechanisms.

View Article and Find Full Text PDF

Enzyme-based reagentless biosensors were developed using the model system of glucose dehydrogenase (GDH) and its nicotinamide adenine dinucleotide cofactor (NAD+). The biosensors were prepared following an approach similar to the concept of molecular imprinting. To this end, the N1-carboxymethyl-NAD+ species were covalently attached to polyamino-saccharide chains of chitosan (CHIT) and allowed to interact with GDH in an aqueous solution.

View Article and Find Full Text PDF

The redox chemistry of insulin was investigated at glassy carbon (GC) electrodes that were coated with films of chitosan (CHIT) and multiwalled carbon nanotubes (CNT). While bare electrodes deactivated quickly during insulin oxidation, the GC electrodes coated with CHIT and CHIT-CNT films generated stable insulin currents. The GC/CHIT-CNT electrodes were used for investigating the electrooxidation process of insulin and amperometric determination of insulin.

View Article and Find Full Text PDF

The ionic interactions were studied in aqueous solutions of Na(3)IrCl(6) + Pb(NO(3))(2) in order to develop a facilitated electrosynthesis of iridium-based catalytic surfaces. Spectroscopic studies indicated that ion pair charge-transfer complexes [IrCl(6)(3-)]-Pb(II) (K = 6 x 10(3)) and [Ir(H(2)O)Cl(5)(2-)]-Pb(II) (K = 2 x 10(3)) were formed in fresh and aged solutions, respectively. Electrochemical studies showed that interactions between the Ir(H(2)O)Cl(5)(2-) and Pb(II) species lead to synergistic lowering of the overpotential that was necessary for nucleation and growth of mixed metal oxide PbIrOx on the surface of glassy carbon electrodes.

View Article and Find Full Text PDF