We report a reduction in motion for suspended seismic-isolation platforms in a gravitational wave detector prototype facility. We sense the distance between two seismic-isolation platforms with a suspension platform interferometer and the angular motion with two optical levers. Feedback control loops reduce the length changes between two platforms separated by [Formula: see text] to [Formula: see text] at [Formula: see text], and the angular motion of each platform is reduced to [Formula: see text] at [Formula: see text].
View Article and Find Full Text PDFSmall, highly absorbing points are randomly present on the surfaces of the main interferometer optics in Advanced LIGO. The resulting nanometer scale thermo-elastic deformations and substrate lenses from these micron-scale absorbers significantly reduce the sensitivity of the interferometer directly though a reduction in the power-recycling gain and indirect interactions with the feedback control system. We review the expected surface deformation from point absorbers and provide a pedagogical description of the impact on power buildup in second generation gravitational wave detectors (dual-recycled Fabry-Perot Michelson interferometers).
View Article and Find Full Text PDFCompact interferometers, called phasemeters, make it possible to operate over a large range while ensuring a high resolution. Such performance is required for the stabilization of large instruments dedicated to experimental physics such as gravitational wave detectors. This paper aims at presenting the working principle of the different types of phasemeters developed in the literature.
View Article and Find Full Text PDFWe experimentally demonstrate an inter-satellite laser link acquisition scheme for GRACE Follow-On. In this strategy, dedicated acquisition sensors are not required-instead we use the photodetectors and signal processing hardware already required for science operation. To establish the laser link, a search over five degrees of freedom must be conducted (± 3 mrad in pitch/yaw for each laser beam, and ± 1 GHz for the frequency difference between the two lasers).
View Article and Find Full Text PDFWe report on the performance of a dual-wavelength resonant, traveling-wave optical parametric oscillator to generate squeezed light for application in advanced gravitational-wave interferometers. Shot noise suppression of 8.6±0.
View Article and Find Full Text PDF