Multiple myeloma (MM) patients are often refractory to targeted therapies including proteasome inhibitors (PIs). Here, analysis of RNA sequencing data derived from 672 patients with newly diagnosed or relapsed/refractory disease identified the acid ceramidase, ASAH1, as a key regulator of PI resistance. Genetic or pharmacological blockade of ASAH1 remarkably restored PI sensitivity and protected mice from resistant MM progression in vivo.
View Article and Find Full Text PDFCancer-induced bone disease greatly diminishes the quality of life for patients with bone metastatic breast cancer, resulting in painful skeletal-related events including bone loss and fracture. Improved understanding of the roles of osteoblasts and osteoclasts, and how tumors alter their biology, has led to blockbuster therapies that significantly reduce skeletal-related events, but the disease remains incurable. However, emerging technologies and tools for studying the role of other stromal and immune components in controlling tumor-host interactions have begun to reveal new insights that may yield tractable therapeutic targets to further mitigate the painful effects of bone metastases.
View Article and Find Full Text PDFSeveral therapeutic agents have been approved for treating multiple myeloma (MM), a cancer of bone marrow resident plasma cells. Predictive biomarkers for drug response could help guide clinical strategies to optimize outcomes. Here, we present an integrated functional genomic analysis of tumor samples from MM patients that were assessed for their ex vivo drug sensitivity to 37 drugs, clinical variables, cytogenetics, mutational profiles, and transcriptomes.
View Article and Find Full Text PDFThe lungs represent the most common site of metastasis for osteosarcoma (OS). Despite our advances in developing targeted therapies for treating solid malignancies, broad acting chemotherapies remain the first line treatment for OS. In assaying the efficacy of approved therapeutics for non-OS malignancies, we previously identified the histone deacetylase 1 and 2 (HDAC1 and 2) inhibitor, romidepsin, as effective for the treatment of established lung metastatic OS.
View Article and Find Full Text PDFThe skeleton is a common site of cancer metastasis and malignancy with the resultant lesions often being incurable. Interactions between metastatic cancer cells and the bone microenvironment are critical for cancer cell survival, outgrowth, and progression. Mesenchymal Stem Cells (MSCs) are an essential stromal cell type in bone that are appreciated for their impacts on cancer-induced bone disease, however, newer evidence suggests that MSCs possess extensive roles in cancer-bone crosstalk, including cancer cell dormancy, metabolic demands, and immune-oncology.
View Article and Find Full Text PDFCancer Metastasis Rev
December 2023
Circulating tumor cells (CTCs) are known to be prognostic for metastatic relapse and are detected in patients as solitary cells or cell clusters. Circulating tumor cell clusters (CTC clusters) have been observed clinically for decades and are of significantly higher metastatic potential compared to solitary CTCs. Recent studies suggest distinct differences in CTC cluster biology regarding invasion and survival in circulation.
View Article and Find Full Text PDFImmune checkpoint blockade has been largely unsuccessful for the treatment of bone metastatic castrate-resistant prostate cancer (mCRPC). Here, we report a combinatorial strategy to treat mCRPC using γδ-enriched chimeric antigen receptor (CAR) T cells and zoledronate (ZOL). In a preclinical murine model of bone mCRPC, γδ CAR-T cells targeting prostate stem cell antigen (PSCA) induced a rapid and significant regression of established tumors, combined with increased survival and reduced cancer-associated bone disease.
View Article and Find Full Text PDFMyeloid-derived monocyte and macrophages are key cells in the bone that contribute to remodeling and injury repair. However, their temporal polarization status and control of bone-resorbing osteoclasts and bone-forming osteoblasts responses is largely unknown. In this study, we focused on two aspects of monocyte/macrophage dynamics and polarization states over time: 1) the injury-triggered pro- and anti-inflammatory monocytes/macrophages temporal profiles, 2) the contributions of pro- versus anti-inflammatory monocytes/macrophages in coordinating healing response.
View Article and Find Full Text PDFEphA2 receptor tyrosine kinase (RTK) is highly expressed in breast tumor cells across multiple molecular subtypes and correlates with poor patient prognosis. In this study, the potential role of EphA2 in this clinically relevant phenomenon is investigated as metastasis of breast cancer to bone is a major cause of morbidity and mortality in patients. It was found that the EphA2 function in breast cancer cells promotes osteoclast activation and the development of osteolytic bone disease.
View Article and Find Full Text PDFBone-forming osteoblasts and -resorbing osteoclasts control bone injury repair, and myeloid-derived cells such as monocytes and macrophages are known to influence their behavior. However, precisely how these multiple cell types coordinate and regulate each other over time within the bone marrow to restore bone is difficult to dissect using biological approaches. Conversely, mathematical modeling lends itself well to this challenge.
View Article and Find Full Text PDFBackground: Bone metastatic prostate cancer (BMPCa), despite the initial responsiveness to androgen deprivation therapy (ADT), inevitably becomes resistant. Recent clinical trials with upfront treatment of ADT combined with chemotherapy or novel hormonal therapies (NHTs) have extended overall patient survival. These results indicate that there is significant potential for the optimization of standard-of-care therapies to delay the emergence of progressive metastatic disease.
View Article and Find Full Text PDFBone metastatic prostate cancer (PCa) promotes mesenchymal stem cell (MSC) recruitment and their differentiation into osteoblasts. However, the effects of bone-marrow derived MSCs on PCa cells are less explored. Here, we report MSC-derived interleukin-28 (IL-28) triggers prostate cancer cell apoptosis via IL-28 receptor alpha (IL-28Rα)-STAT1 signaling.
View Article and Find Full Text PDFMultiple myeloma promotes systemic skeletal bone disease that greatly contributes to patient morbidity. Resorption of type I collagen-rich bone matrix by activated osteoclasts results in the release of sequestered growth factors that can drive progression of the disease. Matrix metalloproteinase-13 (MMP13) is a collagenase expressed predominantly in the skeleton by mesenchymal stromal cells (MSC) and MSC-derived osteoblasts.
View Article and Find Full Text PDFBone metastatic prostate cancer significantly impacts patient quality of life and overall survival, and despite available therapies, it is presently incurable with an unmet need for improved treatment options. As mediators of tumor progression, matrix metalloproteinases (MMPs) can degrade extracellular matrix components and regulate growth factor and cytokine bioactivity. Depending on tissue context, MMPs can either promote or inhibit tumorigenesis.
View Article and Find Full Text PDFFront Bioeng Biotechnol
July 2020
Advanced cancers, such as prostate and breast cancers, commonly metastasize to bone. In the bone matrix, dendritic osteocytes form a spatial network allowing communication between osteocytes and the osteoblasts located on the bone surface. This communication network facilitates coordinated bone remodeling.
View Article and Find Full Text PDFOverall survival rates for patients with advanced osteosarcoma have remained static for over three decades. An in vitro analysis of osteosarcoma cell lines for sensitivity to an array of approved cancer therapies revealed that panobinostat, a broad spectrum histone deacetalyase (HDAC) inhibitor, is highly effective at triggering osteosarcoma cell death. Using in vivo models of orthotopic and metastatic osteosarcoma, here we report that panobinostat impairs the growth of primary osteosarcoma in bone and spontaneous metastasis to the lung, the most common site of metastasis for this disease.
View Article and Find Full Text PDFThe adoptive transfer of genetically engineered T cells expressing a chimeric antigen receptor (CAR) has shown remarkable results against B cell malignancies. This immunotherapeutic approach has advanced and expanded rapidly from preclinical models to the recent approval of CAR-T cells to treat lymphomas and leukemia by the Food and Drug Administration (FDA). Ongoing research efforts are focused on employing CAR-T cells as a therapy for other cancers, and enhancing their efficacy and safety by optimizing their design.
View Article and Find Full Text PDFBone metastatic prostate cancer provokes extensive osteogenesis by driving the recruitment and osteoblastic differentiation of mesenchymal stromal cells (MSCs). The resulting lesions greatly contribute to patient morbidity and mortality, underscoring the need for defining how prostate metastases subvert the MSC-osteoblast differentiation program. To gain insights into this process we profiled the effects of co-culture of primary MSCs with validated bone metastatic prostate cancer cell line models.
View Article and Find Full Text PDFCastration-resistant prostate cancer (CRPC) recurs after androgen deprivation therapy (ADT) and is incurable. Reactivation of androgen receptor (AR) signaling in the low androgen environment of ADT drives CRPC. This AR activity occurs through a variety of mechanisms, including up-regulation of AR coactivators such as VAV3 and expression of constitutively active AR variants such as the clinically relevant AR-V7.
View Article and Find Full Text PDFParathyroid hormone-related protein (PTHrP), with isoforms ranging from 139 to 173 amino acids, has long been implicated in the development and regulation of multiple tissues, including that of the skeleton, via paracrine and autocrine signaling. PTHrP is also known as a potent mediator of cancer-induced bone disease, contributing to a vicious cycle between tumor cells and the bone microenvironment that drives the formation and progression of metastatic lesions. The abundance of roles ascribed to PTHrP have largely been attributed to the N-terminal 1-36 amino acid region, however, activities for mid-region and C-terminal products as well as additional shorter N-terminal species have also been described.
View Article and Find Full Text PDFAcute graft- vs. -host disease (GVHD) is an important cause of morbidity and death after allogeneic hematopoietic cell transplantation (HCT). We identify a new approach to prevent GVHD that impairs monocyte-derived dendritic cell (moDC) alloactivation of T cells, yet preserves graft- vs.
View Article and Find Full Text PDFBone metastatic breast cancer is currently incurable and will be evident in more than 70% of patients that succumb to the disease. Understanding the factors that contribute to the progression and metastasis of breast cancer can reveal therapeutic opportunities. Matrix metalloproteinases (MMPs) are a family of proteolytic enzymes whose role in cancer has been widely documented.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2018
Bone-metastatic prostate cancer is common in men with recurrent castrate-resistant disease. To date, therapeutic focus has largely revolved around androgen deprivation therapy (ADT) and chemotherapy. While second-generation ADTs and combination ADT/chemotherapy approaches have been successful in extending overall survival, the disease remains incurable.
View Article and Find Full Text PDFProstate cancer to bone metastases are almost always lethal. This results from the ability of metastatic prostate cancer cells to co-opt bone remodeling leading to what is known as the . Understanding how tumor cells can disrupt bone homeostasis through their interactions with the stroma and how metastatic tumors respond to treatment is key to the development of new treatments for what remains an incurable disease.
View Article and Find Full Text PDF