Polycyclic aromatic hydrocarbons (PAHs) are mutagenic in somatic cells, whereas it remains unclear whether PAHs induce mutations in male germ cells, subsequently increasing health risks in offspring. Although results from the classical specific locus test are negative or inconclusive, recent studies with environmentally exposed animals suggest that PAHs are mutagenic in sperm cells. Therefore, we studied whether benzo(a)pyrene (B[a]P) was able to induce gene mutations in testis and sperm cells of wild-type (Wt) and Xpc(-/-) mice containing the pUR288 lacZ reporter gene.
View Article and Find Full Text PDFBackground: Benzo [a]pyrene (B[a]P) exposure induces DNA adducts at all stages of spermatogenesis and in testis, and removal of these lesions is less efficient in nucleotide excision repair deficient Xpc-/- mice than in wild type mice. In this study, we investigated by using microarray technology whether compromised DNA repair in Xpc-/- mice may lead to a transcriptional reaction of the testis to cope with increased levels of B[a]P induced DNA damage.
Results: Two-Way ANOVA revealed only 4 genes differentially expressed between wild type and Xpc-/- mice, and 984 genes between testes of B[a]P treated and untreated mice irrespective of the mouse genotype.
Benzo(a)pyrene (B[a]P) can induce somatic mutations, whereas its potential to induce germ cell mutations is unclear. There is circumstantial evidence that paternal exposure to B[a]P can result in germ cell mutations. Since DNA adducts are thought to be a prerequisite for B[a]P induced mutations, we studied DNA adduct kinetics by (32)P-postlabeling in sperm, testes and lung tissues of male mice after a single exposure to B[a]P (13 mg/kg bw, by gavage).
View Article and Find Full Text PDFApproximately half of all hereditary breast cancers are compromised in their DNA repair mechanisms due to loss of BRCA1 or BRCA2 function. Previous research has found a strong correlation between BRCA mutation and TP53 mutation. However, TP53 mutation status is often indirectly assessed by immunohistochemical staining of accumulated p53 protein.
View Article and Find Full Text PDFp53 alterations in human tumors often involve missense mutations that may confer dominant-negative or gain-of-function properties. Dominant-negative effects result in inactivation of wild-type p53 protein in heterozygous mutant cells and as such in a p53 null phenotype. Gain-of-function effects can directly promote tumor development or metastasis through antiapoptotic mechanisms or transcriptional activation of (onco)genes.
View Article and Find Full Text PDFCellular activity of the tumor suppressor protein p53 is primarily regulated by posttranslational modifications. Phosphorylation of the COOH terminus, including Ser389, is thought to result in a conformational change of the p53 protein, enhancing DNA binding and transcriptional activity. In vitro studies presented here show that, in addition to UV radiation, Ser389 is phosphorylated upon exposure to 2-acetylaminofluorene (2-AAF).
View Article and Find Full Text PDFThe nucleotide excision repair (NER) pathway comprises two sub-pathways, transcription coupled repair (TCR) and global genome repair (GGR). To establish the importance of these separate sub-pathways in tumor suppression, we exposed mice deficient for either TCR (Csb), GGR (Xpc) or both (Xpa) to 300 ppm 2-acetylaminofluorene (in feed, ad libitum) in a unique comparative exposure experiment. We found that cancer proneness was directly linked to a defect in the GGR pathway of NER as both Xpa and Xpc mice developed significantly more liver tumors upon 2-AAF exposure than wild type or Csb mice.
View Article and Find Full Text PDFPhosphorylation of the p53 tumor suppressor at Ser20 (murine Ser23) has been proposed to be critical for disrupting p53 interaction with its negative regulator, MDM2, and allowing p53 stabilization. To determine the importance of Ser23 for the function of p53 in vivo, we generated a mouse in which the endogenous p53 locus was targeted to replace Ser23 with alanine. We show that, in mouse embryonic fibroblasts generated from Ser23 mutant mice, Ser23 mutation did not dramatically reduce IR-induced p53 protein stabilization or p53-dependent cell cycle arrest.
View Article and Find Full Text PDFBoth nucleotide excision repair (NER) and the p53 tumor suppressor protein play crucial roles in the prevention of cells becoming cancerous. This is clearly demonstrated by the fact that NER-deficient xeroderma pigmentosum patients and Li-Fraumeni patients who carry a germ-line p53 mutation are highly tumor prone. The NER-deficient Xpa and the p53(+/-) mouse models clearly mimic their human counterparts, because they are both tumor prone as well.
View Article and Find Full Text PDFThere is considerable concern about an enhanced risk of lung tumor development upon exposure of humans to polycyclic aromatic hydrocarbons (PAHs), like benzo[a] pyrene (B[a]P), in combination with induced lung cell proliferation by toxic agents like ozone. We studied this issue in wild-type (WT) C57BL/6 mice, the cancer prone nucleotide excision repair-deficient Xeroderma pigmentosum complementation group A mice (Xpa-/-) and the even more sensitive Xpa-/-/p53+/- mice. The mice were treated with B[a]P through the diet at a dose of 75 p.
View Article and Find Full Text PDFThe p53 tumor suppressor gene is the most frequently mutated gene in human cancers, and germ-line p53 mutations cause a familial predisposition for cancer. Germ-line or sporadic p53 mutations are usually missense and typically affect the central DNA-binding domain of the protein. Because p53 functions as a tetrameric transcription factor, mutant p53 is thought to inhibit the function of wild-type p53 protein.
View Article and Find Full Text PDFThe breast cancer predisposition gene BRCA2 encodes a protein involved in the repair of DNA double-strand breaks, which arise spontaneously and following exposure to ionizing radiation (IR). To develop a mouse model that examines the effect of BRCA2 mutation and IR exposure on in vivo somatic mutation acquisition, we crossed mice with targeted disruption of Brca2 with a LacZ transgenic mutation reporter strain. Loss of both wild-type Brca2 alleles caused a 2.
View Article and Find Full Text PDF