Influenza outbreaks are a major burden worldwide annually. While seasonal vaccines do provide protection against infection, they are limited in that they need to be updated every year to account for the constantly mutating virus. Recently, lipid nanoparticles (LNPs) encapsulating mRNA have seen major success as a vaccine platform for SARS-CoV-2.
View Article and Find Full Text PDFMeasurement of telomere length by fluorescent in situ hybridization is widely used for biomedical and epidemiological research, but there has been relatively little development of the technology in the 20 years since it was first reported. This report describes the use of dual gammaPNA (γPNA) probes that hybridize at alternating sites along a telomere and give rise to Förster resonance energy transfer (FRET) signals. Bright staining of telomeres is observed in nuclei, chromosome spreads and tissue samples.
View Article and Find Full Text PDFUltraviolet light induces cyclobutane pyrimidine dimers (CPD) and pyrimidine(6-4)pyrimidone photoproducts, which interfere with DNA replication and transcription. Nucleotide excision repair (NER) removes these photoproducts, but whether NER functions at telomeres is unresolved. Here we use immunospot blotting to examine the efficiency of photoproduct formation and removal at telomeres purified from UVC irradiated cells at various recovery times.
View Article and Find Full Text PDFGammaPNA oligomers having one or two repeats of the sequence AATCCC were designed to hybridize to DNA having one or more repeats of the complementary TTAGGG sequence found in the human telomere. UV melting curves and surface plasmon resonance experiments demonstrate high affinity and cooperativity for hybridization of these miniprobes to DNA having multiple complementary repeats. Fluorescence spectroscopy for Cy3-labeled miniprobes demonstrate increases in fluorescence intensity for assembling multiple short probes on a DNA target compared with fewer longer probes.
View Article and Find Full Text PDFThe guanine quadruplex (G-quadruplex) is a highly stable secondary structure that forms in G-rich repeats of DNA, which can interfere with DNA processes, including DNA replication and transcription. We showed previously that short guanine-rich peptide nucleic acids (PNAs) can form highly stable hybrid quadruplexes with DNA. We hypothesized that such structures would provide a stronger block to polymerase extension on G-rich templates than a native DNA homoquadruplex because of the greater thermodynamic stability of the PNA-DNA hybrid structures.
View Article and Find Full Text PDFPrevious evidence indicates that telomeres resemble common fragile sites and present a challenge for DNA replication. The precise impediments to replication fork progression at telomeric TTAGGG repeats are unknown, but are proposed to include G-quadruplexes (G4) on the G-rich strand. Here we examined DNA synthesis and progression by the replicative DNA polymerase δ/proliferating cell nuclear antigen/replication factor C complex on telomeric templates that mimic the leading C-rich and lagging G-rich strands.
View Article and Find Full Text PDFTargeting guanine (G) quadruplex structures is an exciting new strategy with potential for controlling gene expression and designing anticancer agents. Guanine-rich peptide nucleic acid (PNA) oligomers bind to homologous DNA and RNA to form hetero-G-quadruplexes but can also bind to complementary cytosine-rich sequences to form heteroduplexes. In this study, we incorporated backbone modifications into G-rich PNAs to improve the selectivity for quadruplex versus duplex formation.
View Article and Find Full Text PDF