Publications by authors named "Connor S Bailey"

Monolayer transition metal dichalcogenides are intensely explored as active materials in 2D material-based devices due to their potential to overcome device size limitations, sub-nanometric thickness, and robust mechanical properties. Considering their large band gap sensitivity to mechanical strain, single-layered TMDs are well-suited for strain-engineered devices. While the impact of various types of mechanical strain on the properties of a variety of TMDs has been studied in the past, TMD-based devices have rarely been studied under mechanical deformations, with uniaxial strain being the most common one.

View Article and Find Full Text PDF

Atomically thin semiconductors are of interest for future electronics applications, and much attention has been given to monolayer (1L) sulfides, such as MoS, grown by chemical vapor deposition (CVD). However, reports on the electrical properties of CVD-grown selenides, and MoSe in particular, are scarce. Here, we compare the electrical properties of 1L and bilayer (2L) MoSe grown by CVD and capped by sub-stoichiometric AlO.

View Article and Find Full Text PDF

Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have been explored for many optoelectronic applications. Most of these applications require them to be on insulating substrates. However, for many fundamental property characterizations, such as mapping surface potential or conductance, insulating substrates are nonideal as they lead to charging and doping effects or impose the inhomogeneity of their charge environment on the atomically thin 2D layers.

View Article and Find Full Text PDF

Heterogeneous integration of nanomaterials has enabled advanced electronics and photonics applications. However, similar progress has been challenging for thermal applications, in part due to shorter wavelengths of heat carriers (phonons) compared to electrons and photons. Here, we demonstrate unusually high thermal isolation across ultrathin heterostructures, achieved by layering atomically thin two-dimensional (2D) materials.

View Article and Find Full Text PDF