Publications by authors named "Connor Riahin"

Evaluation of lymphatic drainage can be challenging to differentiate between separate drainage basins because only one 'color' is typically employed in sentinel node studies. This study aimed to test the feasibility of multicolor lymphangiography using newly developed organic polymer dots. Biocompatible, purely organic, hydroporphyrin-doped near-infrared-emitting polymer dots were developed and evaluated for multicolor imaging in mouse lymph nodes.

View Article and Find Full Text PDF

Semiconducting polymer dots (Pdots) are rapidly becoming one of the most studied nanoparticles in fluorescence bioimaging and sensing. Their small size, high brightness, and resistance to photobleaching make them one of the most attractive fluorophores for fluorescence imaging and sensing applications. This paper highlights our recent advances in fluorescence bioimaging and sensing with nanoscale luminescent Pdots, specifically the use of organic dyes as dopant molecules to modify the optical properties of Pdots to enable deep red and near infrared fluorescence bioimaging applications and to impart sensitivity of dye doped Pdots towards selected analytes.

View Article and Find Full Text PDF

Near-infrared (NIR) fluorescent semiconductor polymer dots (Pdots) have shown great potential for fluorescence imaging due to their exceptional chemical and photophysical properties. This paper describes the synthesis of NIR-emitting Pdots with great control and tunability of emission peak wavelength. The Pdots were prepared by doping poly[(9,9-dioctylfluorenyl-2,7-diyl)-alt-co-(1,4-benzo-(2,1',3)-thiadiazole)] (PFBT), a semiconducting polymer commonly used as a host polymer in luminescent Pdots, with a series of chlorins and bacteriochlorins with varying functional groups.

View Article and Find Full Text PDF