Beilstein J Nanotechnol
March 2025
We developed a novel pulsed laser-assisted process for the fabrication of advanced composites of nonequilibrium gold nanoparticles on carbon fiber paper supports. Our one-step process integrates the generation of nanoparticles with their surface attachment and solves longstanding nanoparticle adhesion and electrical contact issues. Irradiation of hydrophilic carbon fiber paper submerged in aqueous HAuCl solution by nanosecond laser pulses produced composites with uniform distribution of gold nanoparticles on carbon fibers, taking advantage of the high internal surface area of carbon fiber paper.
View Article and Find Full Text PDFUnlabelled: We analyzed the enormous scale of global human needs, their carbon footprint, and how they are connected to energy availability. We established that most challenges related to resource security and sustainability can be solved by providing distributed, affordable, and clean energy. Catalyzed chemical transformations powered by renewable electricity are emerging successor technologies that have the potential to replace fossil fuels without sacrificing the wellbeing of humans.
View Article and Find Full Text PDFCatalysis is essential to modern life and has a huge economic impact. The development of new catalysts critically depends on synthetic methods that enable the preparation of tailored nanomaterials. Pulsed laser in liquids synthesis can produce uniform, multicomponent, nonequilibrium nanomaterials with independently and precisely controlled properties, such as size, composition, morphology, defect density, and atomistic structure within the nanoparticle and at its surface.
View Article and Find Full Text PDF