A key method to produce trapped and laser-cooled molecules is the magneto-optical trap (MOT), which is conventionally created using light red detuned from an optical transition. In this work, we report a MOT for CaF molecules created using blue-detuned light. The blue-detuned MOT (BDM) achieves temperatures well below the Doppler limit and provides the highest densities and phase-space densities reported to date in CaF MOTs.
View Article and Find Full Text PDFEntanglement is crucial to many quantum applications, including quantum information processing, quantum simulation, and quantum-enhanced sensing. Because of their rich internal structure and interactions, molecules have been proposed as a promising platform for quantum science. Deterministic entanglement of individually controlled molecules has nevertheless been a long-standing experimental challenge.
View Article and Find Full Text PDFWe report on a novel bichromatic fluorescent imaging scheme for background-free detection of single CaF molecules trapped in an optical tweezer array. By collecting fluorescence on one optical transition while using another for laser cooling, we achieve an imaging fidelity of 97.7(2)% and a nondestructive detection fidelity of 95.
View Article and Find Full Text PDFRecent work with laser-cooled molecules in attractive optical traps has shown that the differential ac Stark shifts arising from the trap light itself can become problematic, limiting collisional shielding efficiencies, rotational coherence times, and laser-cooling temperatures. In this Letter, we explore trapping and laser cooling of CaF molecules in a ring-shaped repulsive optical trap. The observed dependences of loss rates on temperature and barrier height show characteristic behavior of repulsive traps and indicate strongly suppressed average ac Stark shifts.
View Article and Find Full Text PDFThe iron-chalcogenide high temperature superconductor Fe(Se,Te) (FST) has been reported to exhibit complex magnetic ordering and nontrivial band topology which may lead to novel superconducting phenomena. However, the recent studies have so far been largely concentrated on its band and spin structures while its mesoscopic electronic and magnetic response, crucial for future device applications, has not been explored experimentally. Here, we used scanning superconducting quantum interference device microscopy for its sensitivity to both local diamagnetic susceptibility and current distribution in order to image the superfluid density and supercurrent in FST.
View Article and Find Full Text PDFWe report the first realization of large momentum transfer (LMT) clock atom interferometry. Using single-photon interactions on the strontium ^{1}S_{0}-^{3}P_{1} transition, we demonstrate Mach-Zehnder interferometers with state-of-the-art momentum separation of up to 141 ℏk and gradiometers of up to 81 ℏk. Moreover, we circumvent excited state decay limitations and extend the gradiometer duration to 50 times the excited state lifetime.
View Article and Find Full Text PDFSuperconducting QUantum Interference Device (SQUID) microscopy has excellent magnetic field sensitivity, but suffers from modest spatial resolution when compared with other scanning probes. This spatial resolution is determined by both the size of the field sensitive area and the spacing between this area and the sample surface. In this paper we describe scanning SQUID susceptometers that achieve sub-micron spatial resolution while retaining a white noise floor flux sensitivity of ≈2μΦ/Hz.
View Article and Find Full Text PDF