Publications by authors named "Connor J Boyle"

A significant challenge in the rational design of organic thermoelectric materials is to realize simultaneously high electrical conductivity and high induced-voltage in response to a thermal gradient, which is represented by the Seebeck coefficient. Conventional wisdom posits that the polymer alone dictates thermoelectric efficiency. Herein, we show that doping - in particular, clustering of dopants within conjugated polymer films - has a profound and predictable influence on their thermoelectric properties.

View Article and Find Full Text PDF

Organic materials have attracted recent interest as thermoelectric (TE) converters due to their low cost and ease of fabrication. We examine the effects of disorder on the TE properties of semiconducting polymers based on the Gaussian disorder model (GDM) for site energies while employing Pauli's master equation approach to model hopping between localized sites. Our model is in good agreement with experimental results and a useful tool to study hopping transport.

View Article and Find Full Text PDF

Persistent n-doped conjugated polymers were achieved by doping the electron accepting PDNDIV and PFNDIV polymers with ionic (TBACN) or neutral (TDAE) dopants. The great electron affinities, as indicated by the low LUMO levels of PDNDIV (-4.09 eV) and PFNDIV (-4.

View Article and Find Full Text PDF

Energy densities of ~510 J/g (max: 698 J/g) have been achieved in azobenzene-based syndiotactic-rich poly(methacrylate) polymers. The processing solvent and polymer-solvent interactions are important to achieve morphologically optimal structures for high-energy density materials. This work shows that morphological changes of solid-state syndiotactic polymers, driven by different solvent processings play an important role in controlling the activation energy of Z-E isomerization as well as the shape of the DSC exotherm.

View Article and Find Full Text PDF