Painful musculoskeletal disorders such as intervertebral disc (IVD) degeneration associated with chronic low back pain (termed "Discogenic back pain", DBP), are a significant socio-economic burden worldwide and contribute to the growing opioid crisis. Yet there are very few if any successful interventions that can restore the tissue's structure and function while also addressing the symptomatic pain. Here we have developed a novel non-viral gene therapy, using engineered extracellular vesicles (eEVs) to deliver the developmental transcription factor FOXF1 to the degenerated IVD in an in vivo model.
View Article and Find Full Text PDFBackground: Intervertebral disc (IVD) degeneration is a major contributor to low back pain (LBP), yet there are no clinical therapies targeting the underlying pathology. The annulus fibrosus (AF) plays a critical role in maintaining IVD structure/function and undergoes degenerative changes such as matrix catabolism and inflammation. Thus, therapies targeting the AF are crucial to fully restore IVD function.
View Article and Find Full Text PDFLow back pain is a leading cause of disability worldwide and studies have demonstrated intervertebral disc (IVD) degeneration as a major risk factor. While many models have been developed and used to study IVD pathophysiology and therapeutic strategies, the etiology of IVD degeneration is a complex multifactorial process involving crosstalk of nearby tissues and systemic effects. Thus, the use of appropriate models is necessary to fully understand the associated molecular, structural, and functional changes and how they relate to pain.
View Article and Find Full Text PDF