Proteins and enzymes generally achieve their functions by creating well-defined 3D architectures that pre-organize reactive functionalities. Mimicking this approach to supramolecular pre-organization is leading to the development of highly versatile artificial chemical environments, including new biomaterials, medicines, artificial enzymes, and enzyme-like catalysts. The use of β-turn and α-helical motifs is one approach that enables the precise placement of reactive functional groups to enable selective substrate activation and reactivity/selectivity that approaches natural enzymes.
View Article and Find Full Text PDFWe describe a proof-of-concept study in which peptide-bound enamine and thiourea catalysts are used to facilitate the conjugate addition of cyclohexanone to nitroolefins. Our bifunctional peptide scaffold is modified to optimize the local environment around both catalysts to enhance both reactivity and enantioselectivity, affording selectivities of ≤95% ee. Circular dichroism, nuclear magnetic resonance nuclear Overhauser effect studies, and molecular dynamics simulations verify the helical structure of our catalyst in solution and the importance of the secondary structure in catalysis.
View Article and Find Full Text PDF