Fluid satiation is an important signal and aspect of body fluid homeostasis. Oxytocin-receptor-expressing neurons (Oxtr) in the dorsolateral subdivision of the lateral parabrachial nucleus (dl LPBN) are key neurons which regulate fluid satiation. In the present study, we investigated brain regions activated by stimulation of Oxtr neurons in order to better characterise the fluid satiation neurocircuitry in mice.
View Article and Find Full Text PDFChemogenetic activation of oxytocin receptor-expressing neurons in the parabrachial nucleus (Oxtr neurons) acts as a satiation signal for water. In this research, we investigated the effect of activating Oxtr neurons on satiation for different types of fluids. Chemogenetic activation of Oxtr neurons in male and female transgenic Oxtr mice robustly suppressed the rapid, initial (15-min) intake of several solutions after dehydration: water, sucrose, ethanol and saccharin, but only slightly decreased intake of Ensure®, a highly caloric solution (1 kcal/mL; containing 3.
View Article and Find Full Text PDFDepressed individuals who carry the short allele for the serotonin-transporter-linked promotor region of the gene are more vulnerable to stress and have reduced response to first-line antidepressants such as selective serotonin reuptake inhibitors. Since depression severity has been reported to correlate with brain iron levels, the present study aimed to characterise the potential antidepressant properties of the iron chelator deferiprone. Using the serotonin transporter knock-out (5-HTT KO) mouse model, we assessed the behavioural effects of acute deferiprone on the Porsolt swim test (PST) and novelty-suppressed feeding test (NSFT).
View Article and Find Full Text PDF