Publications by authors named "Connor A Olson"

Machine learning applied to large compendia of transcriptomic data has enabled the decomposition of bacterial transcriptomes to identify independently modulated sets of genes, such iModulons represent specific cellular functions. The identification of iModulons enables accurate identification of genes necessary and sufficient for cross-species transfer of cellular functions. We demonstrate cross-species transfer of: 1) the biotransformation of vanillate to protocatechuate, 2) a malonate catabolic pathway, 3) a catabolic pathway for 2,3-butanediol, and 4) an antimicrobial resistance to ampicillin found in multiple Pseudomonas species to Escherichia coli.

View Article and Find Full Text PDF

Relationships between the genome, transcriptome, and metabolome underlie all evolved phenotypes. However, it has proved difficult to elucidate these relationships because of the high number of variables measured. A recently developed data analytic method for characterizing the transcriptome can simplify interpretation by grouping genes into independently modulated sets (iModulons).

View Article and Find Full Text PDF

The bacterial respiratory electron transport system (ETS) is branched to allow condition-specific modulation of energy metabolism. There is a detailed understanding of the structural and biochemical features of respiratory enzymes; however, a holistic examination of the system and its plasticity is lacking. Here we generate four strains of Escherichia coli harboring unbranched ETS that pump 1, 2, 3, or 4 proton(s) per electron and characterized them using a combination of synergistic methods (adaptive laboratory evolution, multi-omic analyses, and computation of proteome allocation).

View Article and Find Full Text PDF

While microbiological resistance to vancomycin in Staphylococcus aureus is rare, clinical vancomycin treatment failures are common, and methicillin-resistant S. aureus (MRSA) strains isolated from patients after prolonged vancomycin treatment failure remain susceptible. Adaptive laboratory evolution was utilized to uncover mutational mechanisms associated with MRSA vancomycin resistance in a physiological medium as well as a bacteriological medium used in clinical susceptibility testing.

View Article and Find Full Text PDF

Pyruvate dehydrogenase complex (PDC) functions as the main determinant of the respiro-fermentative balance because it converts pyruvate to acetyl-coenzyme A (CoA), which then enters the TCA (tricarboxylic acid cycle). PDC is repressed by the pyruvate dehydrogenase complex regulator (PdhR) in Escherichia coli. The deletion of the pdhR gene compromises fitness in aerobic environments.

View Article and Find Full Text PDF

Background: The evolving antibiotic-resistant behavior of health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) USA100 strains are of major concern. They are resistant to a broad class of antibiotics such as macrolides, aminoglycosides, fluoroquinolones, and many more.

Findings: The selection of appropriate antibiotic susceptibility examination media is very important.

View Article and Find Full Text PDF

The ability of to infect many different tissue sites is enabled, in part, by its transcriptional regulatory network (TRN) that coordinates its gene expression to respond to different environments. We elucidated the organization and activity of this TRN by applying independent component analysis to a compendium of 108 RNA-sequencing expression profiles from two clinical strains (TCH1516 and LAC). ICA decomposed the transcriptome into 29 independently modulated sets of genes (i-modulons) that revealed: 1) High confidence associations between 21 i-modulons and known regulators; 2) an association between an i-modulon and σS, whose regulatory role was previously undefined; 3) the regulatory organization of 65 virulence factors in the form of three i-modulons associated with AgrR, SaeR, and Vim-3; 4) the roles of three key transcription factors (CodY, Fur, and CcpA) in coordinating the metabolic and regulatory networks; and 5) a low-dimensional representation, involving the function of few transcription factors of changes in gene expression between two laboratory media (RPMI, cation adjust Mueller Hinton broth) and two physiological media (blood and serum).

View Article and Find Full Text PDF

Staphylococcus aureus strains have been continuously evolving resistance to numerous classes of antibiotics including methicillin, vancomycin, daptomycin and linezolid, compounding the enormous healthcare and economic burden of the pathogen. Cation-adjusted Mueller-Hinton broth (CA-MHB) is the standard bacteriological media for measuring antibiotic susceptibility in the clinical lab, but the use of media that more closely mimic the physiological state of the patient, e.g.

View Article and Find Full Text PDF

Evolution fine-tunes biological pathways to achieve a robust cellular physiology. Two and a half billion years ago, rapidly rising levels of oxygen as a byproduct of blooming cyanobacterial photosynthesis resulted in a redox upshift in microbial energetics. The appearance of higher-redox-potential respiratory quinone, ubiquinone (UQ), is believed to be an adaptive response to this environmental transition.

View Article and Find Full Text PDF

Oxidative stress is concomitant with aerobic metabolism. Thus, bacterial genomes encode elaborate mechanisms to achieve redox homeostasis. Here we report that the peroxide-sensing transcription factor, oxyR, is a common mutational target using bacterial species belonging to two genera, Escherichia coli and Vibrio natriegens, in separate growth conditions implemented during laboratory evolution.

View Article and Find Full Text PDF

The ability of to tolerate acid stress is important for its survival and colonization in the human digestive tract. Here, we performed adaptive laboratory evolution of the laboratory strain K-12 MG1655 at pH 5.5 in glucose minimal medium.

View Article and Find Full Text PDF

Cation adjusted-Mueller Hinton Broth (CA-MHB) is the standard bacteriological medium utilized in the clinic for the determination of antibiotic susceptibility. However, a growing number of literature has demonstrated that media conditions can cause a substantial difference in the efficacy of antibiotics and antimicrobials. Recent studies have also shown that minimum inhibitory concentration (MIC) tests performed in standard cell culture media (e.

View Article and Find Full Text PDF

Understanding the fundamental characteristics of microbial communities could have far reaching implications for human health and applied biotechnology. Despite this, much is still unknown regarding the genetic basis and evolutionary strategies underlying the formation of viable synthetic communities. By pairing auxotrophic mutants in co-culture, it has been demonstrated that viable nascent E.

View Article and Find Full Text PDF

Pseudogenes represent open reading frames that have been damaged by mutations, rendering the gene product non-functional. Pseudogenes are found in many genomes and are not always eliminated, even if they are potentially 'wasteful'. This raises a fundamental question about their prevalence.

View Article and Find Full Text PDF

Background: Essentiality assays are important tools commonly utilized for the discovery of gene functions. Growth/no growth screens of single gene knockout strain collections are also often utilized to test the predictive power of genome-scale models. False positive predictions occur when computational analysis predicts a gene to be non-essential, however experimental screens deem the gene to be essential.

View Article and Find Full Text PDF