The ubiquitin proteasome system performs the covalent attachment of lysine 48-linked polyubiquitin chains to substrate proteins, thereby targeting them for degradation, while deubiquitylating enzymes (DUBs) reverse this process. This posttranslational modification regulates key features both of innate and adaptative immunity, including antigen presentation, protein homeostasis and signal transduction. Here we show that loss of one of the most highly expressed DUBs, Otub1, results in changes in murine splenic B cell subsets, leading to a significant increase in marginal zone and transitional B cells and a concomitant decrease in follicular B cells.
View Article and Find Full Text PDFNeutrophils are among the fastest-moving immune cells. Their speed is critical to their function as 'first responder' cells at sites of damage or infection, and it has been postulated that the unique segmented nucleus of neutrophils functions to assist their rapid migration. Here, we tested this hypothesis by imaging primary human neutrophils traversing narrow channels in custom-designed microfluidic devices.
View Article and Find Full Text PDFCD4 T cells have a remarkable potential to differentiate into diverse effector lineages following activation. Here, we probe the heterogeneity present among naive CD4 T cells before encountering their cognate antigen to ask whether their effector potential is modulated by pre-existing transcriptional and chromatin landscape differences. Single-cell RNA sequencing shows that key drivers of variability are genes involved in T cell receptor (TCR) signaling.
View Article and Find Full Text PDFMutations that impact immune cell migration and result in immune deficiency illustrate the importance of cell movement in host defense. In humans, loss-of-function mutations in DOCK8, a guanine exchange factor involved in hematopoietic cell migration, lead to immunodeficiency and, paradoxically, allergic disease. Here, we demonstrate that, like humans, Dock8 mice have a profound type 2 CD4 helper T (T2) cell bias upon pulmonary infection with Cryptococcus neoformans and other non-T2 stimuli.
View Article and Find Full Text PDFRegulatory T cells (Tregs) continuously suppress autoreactive immune responses within tissues to prevent autoimmunity, yet the recirculatory behavior of Tregs between and within tissues enabling the maintenance of peripheral tolerance remains incompletely defined. Here, we quantified homing efficiency to and the dwell time of Tregs within secondary lymphoid organs (SLOs) and used intravital two-photon microscopy to measure Treg surveillance behavior of dendritic cells. Tregs homed substantially less efficiently to SLOs compared with conventional CD4 T cells (Tconvs), despite similar expression of homing receptors.
View Article and Find Full Text PDFBackground: As fewer surgeons take emergency general surgery call and hospitals decrease emergency services, a crisis in access looms in the United States. We examined national emergency general surgery capacity and county-level determinants of access to emergency general surgery care with special attention to disparities.
Methods: To identify potential emergency general surgery hospitals, we queried the database of the American Hospital Association for "acute care general hospital," with "surgical services," and "emergency department," and ≥1 "operating room.