Publications by authors named "Connie Nichols"

Unlabelled: Cellular responses to external stress allow microorganisms to adapt to a vast array of environmental conditions, including infection sites. The molecular mechanisms behind these responses are studied to gain insight into microbial pathogenesis, which could lead to new antimicrobial therapies. Here, we explore a role for arrestin protein-mediated ubiquitination in stress response and pathogenesis in the pathogenic fungus .

View Article and Find Full Text PDF

Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process.

View Article and Find Full Text PDF

Elucidating gene function is a major goal in biology, especially among non-model organisms. However, doing so is complicated by the fact that molecular conservation does not always mirror functional conservation, and that complex relationships among genes are responsible for encoding pathways and higher-order biological processes. Co-expression, a promising approach for predicting gene function, relies on the general principal that genes with similar expression patterns across multiple conditions will likely be involved in the same biological process.

View Article and Find Full Text PDF

Fungi often adapt to environmental stress by altering their size, shape, or rate of cell division. These morphological changes require reorganization of the cell wall, a structural feature external to the cell membrane composed of highly interconnected polysaccharides and glycoproteins. Lytic polysaccharide monooxygenases (LPMOs) are copper-dependent enzymes that are typically secreted into the extracellular space to catalyze initial oxidative steps in the degradation of complex biopolymers such as chitin and cellulose.

View Article and Find Full Text PDF

The human-pathogenic yeast Cryptococcus neoformans assembles two types of -linked glycans on its proteins. In this study, we identified and functionally characterized the C. neoformans gene, encoding an α1,3-mannosyltransferase responsible for the second mannose addition to minor -glycans containing xylose in the Golgi apparatus.

View Article and Find Full Text PDF

Infections by fungal pathogens are difficult to treat due to a paucity of antifungals and emerging resistances. Next-generation antifungals therefore are needed urgently. We have developed compounds that prevent farnesylation of Ras protein by inhibiting protein farnesyltransferase with 3-4 nanomolar affinities.

View Article and Find Full Text PDF

Cryptococcus neoformans is an opportunistic fungal pathogen known for its remarkable ability to infect and subvert phagocytes. This ability provides survival and persistence within the host and relies on phenotypic plasticity. The viable but nonculturable (VBNC) phenotype was recently described in C.

View Article and Find Full Text PDF

Cryptococcus neoformans is a serious human pathogen with limited options for treatment. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition and differential thermosensitivity. Extracts from fermentations of four fungal strains from wild and domestic animal dung from Arkansas and West Virginia, USA were identified as Preussia typharum.

View Article and Find Full Text PDF

Cryptococcus neoformans is an opportunistic fungal pathogen primarily targeting immunosuppressed populations in both resource-rich and resource-limited nations. Successful treatment is limited to a few antifungals that have become compromised by cryptococcal resistance, leading to intensive research seeking new drug candidates. Two distinguishing hallmarks of this species are the ability to develop a polysaccharide capsule and melanization of the fungal cells.

View Article and Find Full Text PDF

is a mycoparasitic fungus that can be found parasitizing wood-decay basidiomycetes in the southern USA. Organic solvent extracts of fermented strains of exhibited potent antimicrobial activity, including potent growth inhibition of human pathogenic yeasts and the respiratory pathogenic fungus , and the Gram-positive bacterium . Bioassay-guided separations led to the purification and structure elucidation of new peptaibiotics designated as sphaerostilbellins A and B.

View Article and Find Full Text PDF

Campafungin A is a polyketide that was recognized in the fitness test due to its antiproliferative and antihyphal activity. Its mode of action was hypothesized to involve inhibition of a cAMP-dependent PKA pathway. The originally proposed structure appeared to require a polyketide assembled in a somewhat unusual fashion.

View Article and Find Full Text PDF

is an important human pathogen with limited options for treatments. We have interrogated extracts from fungal fermentations to find -inhibiting natural products using assays for growth inhibition, differential thermosensitivity, and synergy with existing antifungal drugs. Extracts from fermentations of strains of from eastern Texas showed anticryptococcal bioactivity with preferential activity in agar zone of inhibition assays against at 37°C versus 25°C.

View Article and Find Full Text PDF

Human studies have shown associations between cryptococcal meningitis and reduced IgM memory B cell levels, and studies in IgM- and/or B cell-deficient mice have demonstrated increased dissemination from lungs to brain. Since immunoglobulins are part of the immune milieu that confronts in a human host, and its ability to form titan cells is an important virulence mechanism, we determined the effect of human immunoglobulins on titan cell formation (i) Fluorescence microscopy showed normal human IgG and IgM bind (ii) grown in titan cell-inducing medium with IgM, not IgG, inhibited titan-like cell formation. (iii) Absorption of IgM with laminarin or curdlan (branched and linear 1-3-beta-d-glucans, respectively) decreased this effect.

View Article and Find Full Text PDF

Arrestins, a structurally specialized and functionally diverse group of proteins, are central regulators of adaptive cellular responses in eukaryotes. Previous studies on fungal arrestins have demonstrated their capacity to modulate diverse cellular processes through their adaptor functions, facilitating the localization and function of other proteins. However, the mechanisms by which arrestin-regulated processes are involved in fungal virulence remain unexplored.

View Article and Find Full Text PDF

In the course of our studies of coprophilous fungi as sources of antifungal agents, a strain of an undescribed species in the genus Niesslia (TTI-0426) was isolated from horse dung collected in Texas. An extract from fermentation cultures of this strain afforded two new antifungal wortmannin derivatives, wortmannins C and D (1 and 2), as well as four additional new related compounds, wortmannines B1-B4 (3-6), containing an unusual ring system. The structures of these metabolites were established mainly by analysis of HRESIMS and 2D NMR data.

View Article and Find Full Text PDF

The human fungal pathogen, Cryptococcus neoformans, dramatically alters its cell wall, both in size and composition, upon entering the host. This cell wall remodeling is essential for host immune avoidance by this pathogen. In a genetic screen for mutants with changes in their cell wall, we identified a novel protein, Mar1, that controls cell wall organization and immune evasion.

View Article and Find Full Text PDF

The human fungal pathogen Cryptococcus neoformans undergoes many phenotypic changes to promote its survival in specific ecological niches and inside the host. To explore the role of chromatin remodeling on the expression of virulence-related traits, we identified and deleted seven genes encoding predicted class I/II histone deacetylases (HDACs) in the C. neoformans genome.

View Article and Find Full Text PDF

Prenyltransferase enzymes promote the membrane localization of their target proteins by directing the attachment of a hydrophobic lipid group at a conserved C-terminal CAAX motif. Subsequently, the prenylated protein is further modified by postprenylation processing enzymes that cleave the terminal 3 amino acids and carboxymethylate the prenylated cysteine residue. Many prenylated proteins, including Ras1 and Ras-like proteins, require this multistep membrane localization process in order to function properly.

View Article and Find Full Text PDF

The localization and specialized function of Ras-like proteins are largely determined by posttranslational processing events. In a highly regulated process, palmitoyl groups may be added to C-terminal cysteine residues, targeting these proteins to specific membranes. In the human fungal pathogen Cryptococcus neoformans, Ras1 protein palmitoylation is essential for growth at high temperature but is dispensable for sexual differentiation.

View Article and Find Full Text PDF

Proper cellular localization is required for the function of many proteins. The CaaX prenyltransferases (where CaaX indicates a cysteine followed by two aliphatic amino acids and a variable amino acid) direct the subcellular localization of a large group of proteins by catalyzing the attachment of hydrophobic isoprenoid moieties onto C-terminal CaaX motifs, thus facilitating membrane association. This group of enzymes includes farnesyltransferase (Ftase) and geranylgeranyltransferase-I (Ggtase-1).

View Article and Find Full Text PDF

Proliferation and morphogenesis in eukaryotic cells depend on the concerted activity of Rho-type GTPases, including Ras, Cdc42, and Rac. The sexually dimorphic fungus Cryptococcus neoformans, which encodes paralogous, non-essential copies of all three, provides a unique model in which to examine the interactions of these conserved proteins. Previously, we demonstrated that RAS1 mediates C.

View Article and Find Full Text PDF

A genome wide analysis of the human fungal pathogen Cryptococcus neoformans var. grubii has revealed a number of duplications of highly conserved genes involved in morphogenesis. Previously, we reported that duplicate Cdc42 paralogs provide C.

View Article and Find Full Text PDF

Cryptococcus neoformans is a fungal pathogen that causes life-threatening infections in immunocompromised individuals, including AIDS patients and transplant recipients. Few antifungals can treat C. neoformans infections, and drug resistance is increasing.

View Article and Find Full Text PDF

Cryptococcus neoformans is a prevalent human fungal pathogen that must survive within various tissues in order to establish a human infection. We have identified the C. neoformans Rim101 transcription factor, a highly conserved pH-response regulator in many fungal species.

View Article and Find Full Text PDF

The precise regulation of morphogenesis is a key mechanism by which cells respond to a variety of stresses, including those encountered by microbial pathogens in the host. The polarity protein Cdc42 regulates cellular morphogenesis throughout eukaryotes, and we explore the role of Cdc42 proteins in the host survival of the human fungal pathogen Cryptococcus neoformans. Uniquely, C.

View Article and Find Full Text PDF