The transmembrane enzyme CD38, a multifunctional protein ubiquitously present in cells, is the main enzyme that synthesizes and hydrolyzes cyclic adenosine 5'-diphosphate-ribose (cADPR), an intracellular Ca(2+)-mobilizing messenger. CD38 is thought to be a type II transmembrane protein with its carboxyl-terminal catalytic domain located on the outside of the cell; thus, the mechanism by which CD38 metabolizes intracellular cADPR has been controversial. We developed specific antibodies against the amino-terminal segment of CD38 and showed that two opposing orientations of CD38, type II and type III (which has its catalytic domain inside the cell), were both present on the surface of HL-60 cells during retinoic acid-induced differentiation.
View Article and Find Full Text PDFCD38 is a signaling enzyme responsible for catalyzing the synthesis of cyclic ADP ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate; both are universal Ca(2+) messenger molecules. Ablation of the CD38 gene in mice causes multiple physiological defects, including impaired oxytocin release, that result in altered social behavior. A series of catalysis-based inhibitors of CD38 were designed and synthesized, starting with arabinosyl-2'-fluoro-2'-deoxynicotinamide mononucleotide.
View Article and Find Full Text PDFCD38 catalyzes the synthesis of cyclic ADP-ribose (cADPR), a Ca(2+) messenger responsible for regulating a wide range of physiological functions. It is generally regarded as an ectoenzyme, but its intracellular localization has also been well documented. It is not known if internal CD38 is enzymatically active and contributes to the Ca(2+) signaling function.
View Article and Find Full Text PDFHuman CD38 is a novel multi-functional protein that acts not only as an antigen for B-lymphocyte activation, but also as an enzyme catalyzing the synthesis of a Ca(2+) messenger molecule, cyclic ADP-ribose, from NAD(+). It is well established that this novel Ca(2+) signaling enzyme is responsible for regulating a wide range of physiological functions. Based on the crystal structure of the CD38/NAD(+) complex, we synthesized a series of simplified N-substituted nicotinamide derivatives (Compound 1-14).
View Article and Find Full Text PDFMechanical loads can profoundly alter cell growth and cell proliferation. The dinoflagellates are especially sensitive to mechanical stimulation. Many species will be arrested in cell cycle in response to turbulence or shear stress.
View Article and Find Full Text PDF