Publications by authors named "Connie Chao-Shern"

Background: Inadequate response to corneal laser refractive surgery, e.g., ectatic corneal diseases, may not be identified by conventional examinations, hence creating therapeutic uncertainty.

View Article and Find Full Text PDF

Objective: To evaluate the dynamics and longevity of the humoral immune response to SARS-CoV-2 infection and assess the performance of professional use of the UK-RTC AbC-19 Rapid Test lateral flow immunoassay (LFIA) for the target condition of SARS-CoV-2 spike protein IgG antibodies.

Design: Nationwide serological study.

Setting: Northern Ireland, UK, May 2020-February 2021.

View Article and Find Full Text PDF

CRISPR/Cas9 gene editing holds the promise of sequence-specific alteration of the genome to achieve therapeutic benefit in the treated tissue. Cas9 is an RNA-guided nuclease in which the sequence of the RNA can be altered to match the desired target. However, care must be taken in target choice and RNA guide design to ensure both maximum on-target and minimum off-target activity.

View Article and Find Full Text PDF

CRISPR-Cas9 provides a tool to treat autosomal dominant disease by non-homologous end joining (NHEJ) gene disruption of the mutant allele. In order to discriminate between wild-type and mutant alleles, Streptococcus pyogenes Cas9 (SpCas9) must be able to detect a single nucleotide change. Allele-specific editing can be achieved by using either a guide-specific approach, in which the missense mutation is found within the guide sequence, or a protospacer-adjacent motif (PAM)-specific approach, in which the missense mutation generates a novel PAM.

View Article and Find Full Text PDF

Transforming growth factor-β-induced protein (TGFBIp), an extracellular matrix protein, is the second most abundant protein in the corneal stroma. In this review, we summarize the current knowledge concerning the expression, molecular structure, binding partners, and functions of human TGFBIp. To date, 74 mutations in the transforming growth factor-β-induced gene (TGFBI) are associated with amyloid and amorphous protein deposition in TGFBI-linked corneal dystrophies.

View Article and Find Full Text PDF

To date, 70 different TGFBI mutations that cause epithelial-stromal corneal dystrophies have been described. At present one commercially available test examines for the five most common of these mutations: R124H, R124C, R124L, R555W, and R555Q. To expand the capability of identifying the causative mutation in the remaining cases, 57 mutations would need to be added.

View Article and Find Full Text PDF

CRISPR/Cas9 holds immense potential to treat a range of genetic disorders. Allele-specific gene disruption induced by non-homologous end-joining (NHEJ) DNA repair offers a potential treatment option for autosomal dominant disease. Here, we successfully delivered a plasmid encoding S.

View Article and Find Full Text PDF

This study investigated the TGFBI gene mutation types in outpatients clinically diagnosed with granular corneal dystrophy (GCD) prior to phototherapeutic keratectomy (PTK), also calculated the mutation rate of subjects with normal corneas, but positive family history. Clinical GCD outpatients and consanguineous family members were enrolled in this study. Among total 42 subjects: 24 patients from 23 unrelated families had typical signs of GCD on corneas; 5 patients from 5 unrelated families had atypical signs; 13 subjects from 11 unrelated families had no corneal signs but positive family history.

View Article and Find Full Text PDF