In the present study, we compare a classical slow freezing (SLF) method and an aseptic vitrification (Vitrif) technique to cryopreserve a stable primordial germ cell (PGCs) line issued from the Ardennaise chicken breed. Viability immediately after warming was close to 80% and did not differ between the two cryopreservation methods. Proliferation tended to be slower for both cryopreservation methods compared with controls, but the difference was significant only for Vitrif.
View Article and Find Full Text PDFBackground: Mesenchymal stem cells (MSCs) harvested from cadaveric tissues represent a promising approach for regenerative medicine. To date, no study has investigated whether viable MSCs could survive in cadaveric tissues from tendon or ligament up to 72 hours of post-mortem. The purpose of the present work was to find out if viable MSCs could survive in cadaveric tissues from adult equine ligaments up to 72 hours of post-mortem, and to assess their ability (i) to remain in an undifferentiated state and (ii) to divide and proliferate in the absence of any specific stimulus.
View Article and Find Full Text PDFStudy Question: What is the intracellular concentration of cryoprotectant (ICCP) in mouse zygotes during vitrification (VIT) and slow-freezing (SLF) cryopreservation procedures?
Summary Answer: Contrary to common beliefs, it was observed that the ICCP in vitrified zygotes is lower than after SLF, although the solutions used in VIT contain higher concentrations of cryoprotectants (CPs).
What Is Known Already: To reduce the likelihood of intracellular ice crystal formation, which has detrimental effects on cell organelles and membranes, VIT was introduced as an alternative to SLF to cryopreserve embryos and gametes. Combined with high cooling and warming rates, the use of high concentrations of CPs favours an intracellular environment that supports and maintains the transition from a liquid to a solid glass-like state devoid of crystals.