Motivation: Drug combinations have exhibited promise in treating cancers with less toxicity and fewer adverse reactions. However, in vitro screening of synergistic drug combinations is time-consuming and labor-intensive because of the combinatorial explosion. Although a number of computational methods have been developed for predicting synergistic drug combinations, the multi-way relations between drug combinations and cell lines existing in drug synergy data have not been well exploited.
View Article and Find Full Text PDFMiRNAs can regulate genes encoding specific proteins which are related to the efficacy of drugs, and predicting miRNA-drug resistance associations is of great importance. In this work, we propose an attentive multimodal graph convolution network method (AMMGC) to predict miRNA-drug resistance associations. AMMGC learns the latent representations of drugs and miRNAs from four graph convolution sub-networks with distinctive combinations of features.
View Article and Find Full Text PDFPredicting the response of a cancer cell line to a therapeutic drug is an important topic in modern oncology that can help personalized treatment for cancers. Although numerous machine learning methods have been developed for cancer drug response (CDR) prediction, integrating diverse information about cancer cell lines, drugs and their known responses still remains a great challenge. In this paper, we propose a graph neural network method with contrastive learning for CDR prediction.
View Article and Find Full Text PDFIn contrast to wild species, drought-tolerance in crops requires a fully functional metabolism during drought (particularly photosynthetic processes). However, the link between drought-tolerance, photosynthetic regulation during drought, and the associated transcript and metabolic foundation, remains largely unknown. For this study, we used two rice cultivars with contrasting drought-tolerance (the drought-intolerant cultivar IRAT109 and the drought-tolerant cultivar IAC1246) to explore transcript and metabolic responses to long-term drought.
View Article and Find Full Text PDF