There is a debate on whether H-histamine receptors can alter contractility in the mammalian heart. We studied here a new transgenic mouse model where we increased genetically the cardiac level of the H-histamine receptor. We wanted to know if histamine could augment or decrease contractile parameters in mice with cardiac-specific overexpression of human H-histamine receptors (H-TG) and compared these findings with those in littermate wild-type mice (WT).
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
July 2024
Dopamine can exert effects in the mammalian heart via five different dopamine receptors. There is controversy whether dopamine receptors increase contractility in the human heart. Therefore, we have generated mice that overexpress the human D-dopamine receptor in the heart (D-TG) and hypothesized that dopamine increases force of contraction and beating rate compared to wild-type mice (WT).
View Article and Find Full Text PDFPolyubiquitinated proteins are primarily degraded by the ubiquitin-proteasome system (UPS). Proteasomes are present both in the cytoplasm and nucleus. Here, we investigated mechanisms coordinating proteasome subcellular localization and activity in a multicellular organism.
View Article and Find Full Text PDFHistamine receptors mediate important physiological processes and take part in the pathophysiology of different brain disorders. Histamine receptor 1 (HRH1) is involved in the development of neurotransmitter systems, and its role in neurogenesis has been proposed. Altered HRH1 binding and expression have been detected in the brains of patients with schizophrenia, depression, and autism.
View Article and Find Full Text PDFLipid-induced toxicity is part of several human diseases, but the mechanisms involved are not fully understood. Fatty liver is characterized by the expression of different growth and tissue factors. The neurotrophin, nerve growth factor (NGF) and its pro-form, pro-NGF, are present in fatty liver together with p75 neurotrophin receptor (p75NTR).
View Article and Find Full Text PDFAmong brain structures receiving efferent projections from the histaminergic tuberomammillary nucleus is the pontine locus coeruleus (LC) involved in descending noradrenergic control of pain. Here we studied whether histamine in the LC is involved in descending regulation of neuropathic hypersensitivity. Peripheral neuropathy was induced by unilateral spinal nerve ligation in the rat with a chronic intracerebral and intrathecal catheter for drug administrations.
View Article and Find Full Text PDFThe exocyst complex is required for cell polarity regulation and the targeting and tethering of transport vesicles to the plasma membrane. The complex is structurally well conserved, however, the functions of individual subunits and their regulation is poorly understood. Here we characterize the mutant phenotypes for the exocyst complex genes exoc-7 (exo70) and exoc-8 (exo84) in Caenorhabditis elegans.
View Article and Find Full Text PDFSKN-1, the Caenorhabditis elegans Nrf1/2/3 ortholog, promotes both oxidative stress resistance and longevity. SKN-1 responds to oxidative stress by upregulating genes that detoxify and defend against free radicals and other reactive molecules, a SKN-1/Nrf function that is both well-known and conserved. Here we show that SKN-1 has a broader and more complex role in maintaining cellular stress defenses.
View Article and Find Full Text PDFIn rat thalamus, histamine H(1) receptor and isoforms of H(3) receptor were expressed predominantly in the midline and intralaminar areas. Correspondingly, higher H(1) and H(3) receptor binding was also detected in these areas. All isoforms of H(3) receptor were expressed in several thalamic nuclei, but there were minor differences between their expression patterns.
View Article and Find Full Text PDF