Publications by authors named "Congxia Xie"

The combination of multiple physical properties is of great importance for widening the application scenarios of biomaterials. It remains a great challenge to fabricate biomolecules-based fibers gaining both mechanical strength and toughness which are comparable to natural spider dragline silks. Here, by mimicking the structure of dragline silks, a high-performance fluorescent fiber Alg-TPEA-PEG is designed by non-covalently cross-linking the polysaccharide chains of alginate with AIEgen-based surfactant molecules as the flexible contact points.

View Article and Find Full Text PDF

A porous noncovalent organic framework with AIE effect is designed and synthesized as the support for gold nanoparticles (AuNPs). The framework is fabricated through the electrostatic complexation between carboxymethyl cellulose and tetraphenylethene-containing ammonium surfactant, which can complex AuNPs via the noncovalent interactions to offer a heterogeneous catalyst. Compared to the covalent modification on cellulose, this noncovalent framework gains superiorities in the catalyst synthesis and the size control of AuNPs.

View Article and Find Full Text PDF

Herein, based on the concept of integration of phosphine ligands and ionic liquids (ILs), a class of chiral phosphine-functionalized polyether ionic liquids (CPF-PILs) were synthesized by ion-exchange reaction between polyether imidazolium ILs and a phenyl-sulfonated ()-(-)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl (BINAP) chiral diphosphine ligand, and employed in the Ru-catalyzed homogeneous asymmetric hydrogenation of β-keto esters. The resulting CPF-PILs combined the dual functions of the chiral phosphine ligand and ILs, allowing efficient recovery and recycling of the chiral catalysts using only a catalytic amount of CPF-PILs. The effects of various factors, including the chiral catalyst structure, solvent properties, reaction temperature, hydrogen pressure, and hydrobromic acid dosage, on catalytic performance were thoroughly investigated, as well as the cycling stability and universality of the chiral catalysts were examined.

View Article and Find Full Text PDF

The Rh/BINAPa and ZSM-35(10) co-catalyzed tandem hydroformylation-acetalization of olefins has been developed. A series of olefins with various alcohols performed well in the process, affording the corresponding acetals with high regioselectivities (l/b ≥ 30.5) and excellent catalytic activities (TON of the Rh catalyst up to 4.

View Article and Find Full Text PDF

N-doped mesoporous carbon spheres (NHMC@mSiO ) encapsulated in silica shells were prepared by emulsion polymerization and domain-limited carbonization using ethylenediamine as the nitrogen source, and Ru-Ni alloy catalysts were prepared for the hydrogenation of α-pinene in the aqueous phase. The internal cavities of this nanomaterial are lipophilic, enhancing mass transfer and enrichment of the reactants, and the hydrophilic silica shell enhances the dispersion of the catalyst in water. N-doping allows more catalytically active metal particles to be anchored to the amphiphilic carrier, enhancing its catalytic activity and stability.

View Article and Find Full Text PDF

Correction for 'Photoregulative phase change biomaterials showing thermodynamic and mechanical stabilities' by Lei Zhang , , 2022, , 976-983, https://doi.org/10.1039/D1NR06000G.

View Article and Find Full Text PDF

Background: Lycopene is increasing in demand due to its widespread use in the pharmaceutical and food industries. Metabolic engineering and synthetic biology technologies have been widely used to overexpress the heterologous mevalonate pathway and lycopene pathway in Escherichia coli to produce lycopene. However, due to the tedious metabolic pathways and complicated metabolic background, optimizing the lycopene synthetic pathway using reasonable design approaches becomes difficult.

View Article and Find Full Text PDF

The starch composite films (SCFs) will be one of the best alternative packaging materials to petroleum based plastic films, which mitigates white pollution and energy consumption. However, weak mechanical stability, water resistance, and dyeability has hindered the application of SCFs. Herein, a bioinspired robust SCFs with super-hydrophobicity and excellent structural colors were prepared by fiber-reinforcement and assembling SiO/Polydimethylsiloxane (PDMS) amorphous arrays on the surface of SCFs.

View Article and Find Full Text PDF

()-(+)-perillyl alcohol is widely used in agricultural and anticarcinogenic fields. Microbial production of ()-(+)-perillyl alcohol was investigated in this study. We optimized biosynthesis of ()-(+)-perillyl alcohol in by using neryl pyrophosphate synthase and NADPH regeneration.

View Article and Find Full Text PDF

()-(+)-perillyl alcohol is a much valued supplemental compound with a wide range of agricultural and pharmacological characteristics. The aim of this study was to improve ()-(+)-perillyl alcohol production using a whole-cell catalytic formula. In this study, we employed plasmids with varying copy numbers to identify an appropriate strain, strain 03.

View Article and Find Full Text PDF

2D heterostructures provide a competitive platform to tailor electrical property through control of layer structure and constituents. However, despite the diverse integration of 2D materials and their application flexibility, tailoring synergistic interlayer interactions between 2D materials that form electronically coupled heterostructures remains a grand challenge. Here, the rational design and optimized synthesis of electronically coupled N-doped mesoporous defective carbon and nitrogen modified titanium carbide (Ti C ) in a 2D sandwiched heterostructure, is reported.

View Article and Find Full Text PDF

The functions of the materials composed of small molecules are highly dependent on their ordered molecular arrangements in both natural and artificial systems. Without ordered structure, small molecules hardly gain complicated functions, due to the absence of intermolecular covalent bond connection or strong network. Here, a low molecular weight spiropyran that could exhibit attractive photochromism and powerful adhesion property in disordered solid state is demonstrated.

View Article and Find Full Text PDF

Azobenzenes are great photochromic molecules for switching the physical properties of various materials - isomerization. However, the UV light resulted -azobenzene is metastable and thermodynamically gets back to -azobenzene after ceasing UV irradiation, which causes an unwanted property change of azobenzene-containing materials. Additionally, thermal and mechanical conditions would accelerate this process dramatically.

View Article and Find Full Text PDF

Lactate and isoprene are two common monomers for the industrial production of polyesters and synthetic rubbers. The present study tested the co-production of D-lactate and isoprene by engineered in microaerobic conditions. The deletion of alcohol dehydrogenase () and acetate kinase () genes, along with the supplementation with betaine, improved the co-production of lactate and isoprene from the substrates of glucose and mevalonate.

View Article and Find Full Text PDF

Recently, by constructing a haloalkyl chain, a new class of solid-state spiropyrans showing advanced photochromic activity has been developed, but the tailoring effect of the haloalkyl chain on photochromism is unclear. Here, the photochromism of solid-state spiropyrans with different chain lengths and end substituents is investigated, which gives a clear correlation between the chain length/end substituent and the thermodynamic stability of zwitterionic merocyanine. This work provides a useful designing strategy for tailoring the photochromism of solid-state spiropyrans.

View Article and Find Full Text PDF

Background: Propionic acid as a very valuable chemical is in high demand, and it is industrially produced via the oxo-synthesis of ethylene or ethyl alcohol and via the oxidation of propionaldehyde with oxygen. It is urgent to discover a new preparation method for propionic acid via a green route. Recyclable amino-acid-based organic-inorganic heteropolyoxometalates were first used to high-efficiently catalyse the selective oxidation of 1-propanol to propionic acid with HO as an oxidant.

View Article and Find Full Text PDF

Background: (R)-(+)-perillyl alcohol is a naturally oxygenated monoterpene widely used as the natural flavor additives, insecticides, jet fuels and anti-cancer therapies. It was also readily available monoterpene precursors. However, this natural product is present at low concentrations from plant sources which are not economically viable.

View Article and Find Full Text PDF

cis-Abienol, a natural diterpene-diol isolated from balsam fir (Abies balsamea), can be employed as precursors for the semi-synthesis of amber compounds, which are sustainable replacement for ambergris and widely used in the fragmented industry. This study combinatorially co-expressed geranyl diphosphate synthase, geranylgeranyl diphosphate synthase, Labda-13-en-8-ol diphosphate synthase and diterpene synthase, with the best combination achieving ~ 0.3 mg/L of cis-abienol.

View Article and Find Full Text PDF

A one-pot clean preparation procedure and catalytic performance of platinum nanoparticles (NPs) reduced and stabilized by sodium lignosulfonate in aqueous solution are reported. No other chemical reagents are needed during the metal reduction and stabilization step, thanks to the active participation of sodium lignosulfonate (SLS). UV-vis, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), H NMR, Pt NMR, and two-dimensional heteronuclear single-quantum coherence (2D HSQC) NMR studies were thoroughly performed to analyze the formation, particle size, and main lattice planes of NPs, the valence-state changes of the metal, and structural changes of SLS.

View Article and Find Full Text PDF
Article Synopsis
  • A water-soluble azobenzene chemosensor (designated as 1) was developed for the selective detection of mercury ions (Hg2+).
  • The sensor exhibited significant changes in UV-Vis absorption signals, particularly around 240 nm, indicating its ability to identify Hg2+ across various pH levels while remaining unaffected by other metal ions and light exposure.
  • The addition of Hg2+ resulted in a structural change to trans-1, linked to the interaction between the sensor's polyethylene glycol (PEG) chain and the mercury ion, which was confirmed by a control experiment.
View Article and Find Full Text PDF

The facile synthesis of yolk-shell-structured nanoparticles (YSNPs) with mobile active metal cores and mesoporous inorganic-organic hybrid silica shells (mHSiO2) is important for their applications. In this work, Pd@mHSiO2 YSNPs have been synthesized in aqueous solution at 95 °C by a one-pot method without the need for extensive purification and separation steps. The method is simple and facile, and ingeniously combines the controlled synthesis of Pd nanocubes, coating of mesoporous silica, and transition from core-shell-structured nanoparticles (CSNPs) to YSNPs.

View Article and Find Full Text PDF

A new porous organic polymer supported rhodium catalyst (Rh/POL-BINAPa&PPh) has been developed for the hydroformylation of various alkynes to afford the corresponding α,β-unsaturated aldehydes with high chem- and stereoselectivity, excellent catalytic activity and good reusability (10 cycles). The heterogeneous catalyst exhibited more catalytic activity than the comparable homogeneous Rh/BINAPa/PPh system.

View Article and Find Full Text PDF

A new type of Pd@mSiO composite nanospheres with controlled pore structure, consisting of internal Pd cores and controlled mesoporous silica shells, has been prepared by a facile one-pot method. The thickness and pore size of the shell could be easily tuned by changing the amounts of TEOS and the hydrophobic block length, respectively, during synthesis. In this perspective, the effects of CTAB concentration, pH, and TEOS concentration on the monodisperse sphere morphology of Pd@mSiO nanoparticles (NPs) were investigated.

View Article and Find Full Text PDF

In aqueous medium without any other additives, palladium (Pd) nanoparticles with water-soluble polyvinyl alcohol (PVA) as stabilizer were synthesized for the catalytic hydrogenation of nitrobenzene. Under the optimum experimental conditions, the nitrobenzene conversion and the selectivity for aniline were 99.3 % and 100 %, respectively.

View Article and Find Full Text PDF