IEEE Trans Pattern Anal Mach Intell
September 2024
IEEE Trans Image Process
March 2024
Video anomaly detection aims to find the events in a video that do not conform to the expected behavior. The prevalent methods mainly detect anomalies by snippet reconstruction or future frame prediction error. However, the error is highly dependent on the local context of the current snippet and lacks the understanding of normality.
View Article and Find Full Text PDFIEEE Trans Image Process
January 2022
Few-shot learning is a fundamental and challenging problem since it requires recognizing novel categories from only a few examples. The objects for recognition have multiple variants and can locate anywhere in images. Directly comparing query images with example images can not handle content misalignment.
View Article and Find Full Text PDFIEEE Trans Cybern
March 2018
3-D convolutional neural networks (3-D CNNs) have been established as a powerful tool to simultaneously learn features from both spatial and temporal dimensions, which is suitable to be applied to video-based action recognition. In this paper, we propose not to directly use the activations of fully connected layers of a 3-D CNN as the video feature, but to use selective convolutional layer activations to form a discriminative descriptor for video. It pools the feature on the convolutional layers under the guidance of body joint positions.
View Article and Find Full Text PDF