Publications by authors named "Congkun Xie"

A hybrid platform, constructed via the surface "armoring" of living yeasts by a manganese silicate compound (MS@Yeast), is investigated for combinational cancer treatment. The intrinsic characteristics of living yeasts, in both acidophilic and anaerobic conditions, empower the hybrid platform with activated selected colonization in tumors. While silicate particles are delivered in a targeting manner, yeast fermentation occurs at the cancerous region, inducing both alcohol and CO.

View Article and Find Full Text PDF

As a result of their radiation-free nature and deep-penetration ability, tumor theranostics mediated by ultrasound have become increasingly recognized as a modality with high potential for translation into clinical cancer treatment. The effective integration of ultrasound imaging and sonodynamic therapy (SDT) into one nanoplatform remains an enormous challenge yet to be fully resolved. Here, a novel theranostic system, consisting of rattle-type SiO (r-SiO) loaded with Mn-doped InS/InOOH (SMISO), was designed and synthesized to enable an improved ultrasound imaging-guided therapy.

View Article and Find Full Text PDF

Sonodynamic therapy (SDT), presenting spatial and temporal control of ROS generation triggered by ultrasound field, has attracted considerable attention in tumor treatment. However, its therapeutic efficacy is severely hindered by the intrinsic hypoxia of solid tumor and the lack of smart design in material band structure. Here in study, fine α-FeO nanoparticles armored with Pt nanocrystals (α-FeO@Pt) was investigated as an alternative SDT agent with ingenious bandgap and structural design.

View Article and Find Full Text PDF

Mitochondria are crucial metabolic organelles involved in tumorigenesis and tumor progression, and the induction of abnormal mitochondria metabolism is recognized as a strategy with strong potential for the exploration of advanced tumor therapeutics. Herein, hierarchical manganese silicate nanoclusters modified with triphenylphosphonium (MSNAs-TPP) were designed and synthesized for mitochondria-targeted tumor theranostics. The as-prepared MSNAs-TPP retains considerable dimensional and structural stability in the neutral physiological environment, favoring its accumulation at the tumor site.

View Article and Find Full Text PDF

Although immunotherapy such as immune checkpoint inhibitors has shown promising efficacy in cancer treatment, the responsiveness among patients is relatively limited. Activation of the cyclic guanosine monophosphate-adenosine monophosphate synthase/interferon gene stimulator (cGAS/STING) signaling pathway to upregulate innate immunity has become an emerging strategy for enhancing tumor immunotherapy. Herein, ZnS@BSA (bovine serum albumin) nanoclusters synthesized via a self-assembly approach are reported, where the released zinc ions under acidic tumor microenvironment significantly enhance cGAS/STING signals.

View Article and Find Full Text PDF

Therapeutic systems to induce reactive oxygen species (ROS) have received tremendous success in the research of tumor theranostics, but suffered daunting challenges in limited efficacy originating from low presence of reactants and reaction kinetics within cancer cells. Here, ferrous sulfide-embedded bovine serum albumin (FeS@BSA) nanoclusters, in an amorphous nature, are designed and synthesized via a self-assembly approach. In acidic conditions, the nanoclusters degrade and simultaneously release HS gas and Fe ions.

View Article and Find Full Text PDF

Nanoparticles are now commonly used as non-viral gene vectors for RNA interference (RNAi) in cancer therapy but suffer from low targeting efficiency in situ. Meanwhile, localized drug delivery systems do not offer the effective capability for intracellular gene transportation. We describe here the design and synthesis of a localized therapeutic system, consisting of gold nanorods (Au NRs) loaded with hTERT siRNA assembled on the surface of ZnGa2O4:Cr (ZGOC) nanofibers.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play a key role in regulating gene expression but can be associated with abnormalities linked to carcinogenesis and tumor progression. Hence there is increasing interest in developing methods to detect these non-coding RNA molecules in the human circulation system. Here, a novel FRET miRNA-195 targeting biosensor, based on silica nanofibers incorporated with rare earth-doped calcium fluoride particles (CaF:Yb,Ho@SiO) and gold nanoparticles (AuNPs), is reported.

View Article and Find Full Text PDF