Grain filling is a critical process for achieving a high grain yield in maize ( L.), which can be improved by optimal combination with genotype and nitrogen (N) fertilization. However, the physiological processes of variation in grain filling in hybrids and the underlying mechanisms of carbon (C) and N translocation, particularly under various N fertilizations, remain poorly understood.
View Article and Find Full Text PDFAdjusting the sowing date to optimize temperature conditions is a helpful strategy for mitigating the adverse impact of high temperature on summer maize growth in the North China Plain (NCP). However, the physiological processes of variation in summer maize yield with sowing date-associated changes in temperature conditions around flowering remain to be poorly understood. In this study, field experiments with two maize varieties and three sowing dates (early sowing date, SD1, 21 May; conventional sowing date, SD2, 10 June; delay sowing date, SD3, 30 June) were conducted at Xinxiang of Henan Province in 2019 and 2020.
View Article and Find Full Text PDFHigh-density planting aggravates competition among plants and has a negative impact on plant growth and productivity. Nitrogen application and chemical control can improve plant growth and increase grain yield in high-density planting. Our experiment explored the effects of nitrogen fertilizer and plant growth regulators on maize root-bleeding sap, phosphorus (P) and potassium (K) accumulation and translocation, and grain yield and quality in high-density planting.
View Article and Find Full Text PDFNitrogen (N) fertilizer application greatly enhances grain yield by improving dry matter accumulation and grain filling in spring maize. However, how N application rates regulate the vascular bundle structure, matter transport and grain filling of spring maize under a high planting density has been poorly understood thus far. In this study, we analyzed the relationship between grain filling, vascular bundle structure and matter transport efficiency (MTE) of spring maize in the field.
View Article and Find Full Text PDFBackground: Soil salinity restricts plant growth and productivity. 2-(3,4-dichlorophenoxy) triethylamine (DCPTA) can alleviate salinity stress in plants. However, the mechanism of DCPTA-mediated salinity tolerance has not been fully clarified.
View Article and Find Full Text PDFBackground: Nitrogen (N) metabolism plays an important role in plant drought tolerance. 2-(3,4-Dichlorophenoxy) triethylamine (DCPTA) regulates many aspects of plant development; however, the effects of DCPTA on soil drought tolerance are poorly understood, and the possible role of DCPTA on nitrogen metabolism has not yet been explored.
Results: In the present study, the effects of DCPTA on N metabolism in maize (Zea mays L.
Drought stress (DS) is a major environmental factor limiting plant growth and crop productivity worldwide. It has been established that exogenous spermidine (Spd) stimulates plant tolerance to DS. The effects of exogenous Spd on plant growth, photosynthetic performance, and chloroplast ultrastructure as well as changes in endogenous polyamines (PAs) and phytohormones were investigate in DS-resistant (Xianyu 335) and DS-sensitive (Fenghe 1) maize seedlings under well-watered and DS treatments.
View Article and Find Full Text PDFBronchial artery aneurysm (BAA) is a rare but potentially life-threatening clinical entity. Patients with multiple BAAs and multiple aneurysmal dilations are even rarer. In this case report, we will investigate a case of multiple BAAs and multiple aneurysmal dilations arising from 2 right bronchial artery branches presenting with hemoptysis.
View Article and Find Full Text PDFPlastic film mulching (PM) has been widely used to improve maize (Zea mays L.) yields and water use efficiency (WUE) in Northeast China, but the effects of PM in a changing climate characterized by highly variable precipitation are not well understood. Six site-year field experiments were conducted in the dry and rainy years to investigate the effects of PM on maize growth, grain yield, and WUE in Northeast China.
View Article and Find Full Text PDFThe aim of the present study was to explore the protective effect of small interfering RNA (siRNA) against nuclear factor κB (NF-κB) p65 on sepsis-induced acute lung injury (ALI) in mice. In total, 70 male Kunming mice were randomly divided into a healthy control group, a sepsis group, a specific interfering group and a scrambled control group (Sc), and the latter three groups were divided into post-operational 6 and 12 h subgroups, each of which consisted of 10 mice. The mice were administered with NF-κB siRNA, scrambled siRNA and normal saline via tail vein injection.
View Article and Find Full Text PDFYing Yong Sheng Tai Xue Bao
October 2008
Maize cytoplasmic male sterile (CMS) lines and their homotype fertile lines were cultivated on soil column to study the differences of their root traits at different growth stages after anthesis. The results indicated that CMS lines had stronger ability of dry matter accumulation in their aboveground part, their grain yield was significantly higher than that of homotype fertile lines (P < 0.05), and their root dry mass was higher.
View Article and Find Full Text PDF