Publications by authors named "Congcong Pei"

p-Phenylenediamine (PPD) antioxidants and their quinone derivatives (PPDQs), as hot-spot novel contaminants in recent years, have been detected in air fine particulate matters (PM) in multiple regions. However, current research all discussed the pollution of PPDs and PPDQs based on the collected PM samples at least in one day (23.5 h).

View Article and Find Full Text PDF

The broad application of various pesticides guarantees the development of agriculture all over the word but has ultimately led to their ubiquitous release into the environment as hazardous chemical residues. Diamide insecticides (DAIs) are regarded as new choice for prevention and protection of agricultural crops and city landscaping plants from the pests in more and more countries. However, their presence in fine particulate matter (PM) and associated health risks have not been studied.

View Article and Find Full Text PDF

The rising incidence of infections caused by multidrug-resistant bacteria highlights the urgent need for innovative bacterial eradication strategies. Metal ions, such as Zn and Co, have bactericidal effects by disrupting bacterial cell membranes and interfering with essential cellular processes. This has led to increased attention toward metal-organic frameworks (MOFs) as potential nonantibiotic bactericidal agents.

View Article and Find Full Text PDF

High-performance metabolic diagnosis-based laser desorption/ionization mass spectrometry (LDI-MS) improves the precision diagnosis of diseases and subsequent treatment. Inorganic matrices are promising for the detection of metabolites by LDI-MS, while the structure and component impacts of the matrices on the LDI process are still under investigation. Here, we designed a multiple-shelled ZnMnO/(Co, Mn)(Co, Mn)O (ZMO/CMO) as the matrix from calcined MOF-on-MOF for detecting metabolites in LDI-MS and clarified the synergistic impacts of multiple-shells and the heterostructure on LDI efficiency.

View Article and Find Full Text PDF

Epithelial ovarian cancer (EOC) is a polyfactorial process associated with alterations in metabolic pathways. A high-performance screening tool for EOC is in high demand to improve prognostic outcome but is still missing. Here, a concave octahedron Mn O /(Co,Mn)(Co,Mn) O (MO/CMO) composite with a heterojunction, rough surface, hollow interior, and sharp corners is developed to record metabolic patterns of ovarian tumors by laser desorption/ionization mass spectrometry (LDI-MS).

View Article and Find Full Text PDF

metabolic fingerprinting encodes diverse diseases for clinical practice, while tedious sample pretreatment in bio-samples has largely hindered its universal application. Designed materials are highly demanded to construct diagnostic tools for high-throughput metabolic information extraction. Herein, a ternary component chip composed of mesoporous silica substrate, plasmonic matrix, and perfluoroalkyl initiator is constructed for direct metabolic fingerprinting of biofluids by laser desorption/ionization mass spectrometry.

View Article and Find Full Text PDF

A facile and mild Ru(II)-catalyzed -C-H hydroxyfluoroalkylation of arenes with cheap and easily accessible fluorinated alcohols has been developed in the presence of 2,2,6,6-tetramethyl-1-piperidinyloxyl (TEMPO). The readily available fluorinated alcohols were used as hydroxyfluoroalkylation reagents to form various α-aryl-α-trifluoromethyl alcohols. The present work provides a new method for the introduction of hydroxyfluoroalkyl groups into arenes.

View Article and Find Full Text PDF

A mild and efficient Cu-assisted trifluoromethylthiolation/radical cascade cyclization of alkynes with readily available and stable AgSCF as the trifluoromethylthiolating reagent has been disclosed. This transformation provides an opportunity to construct a series of potential medicinally valuable trifluoromethylthio-substituted dioxodibenzothiazepines with wide functional group compatibility. This protocol opens up a new avenue for the construction of useful trifluoromethylthiolated seven-membered N-heterocycles.

View Article and Find Full Text PDF

Peptide profiling based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is of particular interest as it can provide physiologically and pathologically related information of the bio-samples. Due to the complexity of real biological samples, MALDI-TOF MS-based peptide mapping methods rely strongly on particular enrichment methods to improve the signal intensity. This paper introduces third-generation dendrimer-modified SBA-15 with the surface functionalization of amino and carboxyl group, respectively (denoted as SBA-15/G3-NH and SBA-15/G3-COOH), for the efficient capture of low-abundance peptides.

View Article and Find Full Text PDF

A noninvasive, easy operation, and accurate diagnostic protocol is highly demanded to assess systemic lupus erythematosus (SLE) activity during pregnancy, promising real-time activity monitoring during the whole gestational period to reduce adverse pregnancy outcomes. Here, machine learning of serum metabolic fingerprints (SMFs) is developed to assess the SLE activity for pregnant women. The SMFs are directly extracted through a hollow-cobalt oxide/carbon (Co O /C)-composite-assisted laser desorption/ionization mass spectrometer (LDI MS) platform.

View Article and Find Full Text PDF

Metabolic analysis in biofluids interprets the end products in the bioprocess, emerging as an irreplaceable disease diagnosis and monitoring platform. Laser desorption/ionization mass spectrometry (LDI MS)-based metabolic analysis holds great potential for clinical applications in terms of high throughput, rapid signal readout, and minimal sample preparation. There are two essential elements to construct the LDI MS-based metabolic analysis: 1) well-designed nanomaterials as matrices; 2) machine learning algorithms for data analysis.

View Article and Find Full Text PDF

A mild and efficient visible-light-induced radical difluoromethylation/cyclization of unactivated alkenes toward the synthesis of substituted quinazolinones with easily accessible difluoromethyltriphenylphosphonium bromide has been developed. The transformation has the advantages of wide functional group compatibility, a broad substrate scope, and operational simplicity. The benign protocol offers a facile access to pharmaceutically valuable difluoromethylated polycyclic quinazolinones.

View Article and Find Full Text PDF

Schizophrenia (SZ) detection enables effective treatment to improve the clinical outcome, but objective and reliable SZ diagnostics are still limited. An ideal diagnosis of SZ suited for robust clinical screening must address detection throughput, low invasiveness, and diagnosis accuracy. Herein, we built a multi-shelled hollow Cr O spheres (MHCSs) assisted laser desorption/ionization mass spectrometry (LDI MS) platform for the direct metabolic profiling of biofluids towards SZ diagnostics.

View Article and Find Full Text PDF

Herein, we developed the first visible-light-induced direct Csp-H radical 2,2,2-trifluoroethylation of coumarins with commercially available and cheap reagent CFCHI at room temperature. This transformation proceeded smoothly under mild conditions and showed excellent functional group compatibility. The synthetic value of the protocol was also demonstrated by the successful functionalization of several pharmaceuticals.

View Article and Find Full Text PDF

The efficient detection of small molecules is of significance for environmental monitoring, pharmacology, metabolomics, and lipidomics. The laser desorption/ionization mass spectrometry (LDI MS) platform enables high sensitivity, accuracy, resolution, and throughput in molecular analysis, but its analytical capability with respect to small molecules is limited due to inherent drawbacks arising from conventional organic matrices. The selection of an appropriate matrix is thus a precondition for small molecule detection by LDI MS.

View Article and Find Full Text PDF

A triblock asymmetric nanostructure composed of a core-shell Fe2O3@SiO2 cube as the head, SiO2 rod as the body and SiO2 tube as the tail is fabricated via a sequential growth process combining solution-liquid-solid and droplet soft templating mechanisms, which can be used as a nano stir bar with accelerated catalytic performance.

View Article and Find Full Text PDF

High-throughput metabolic analysis is of significance in diagnostics, while tedious sample pretreatment has largely hindered its clinic application. Herein, we designed FeOOH@ZIF-8 composites with enhanced ionization efficiency and size-exclusion effect for laser desorption/ionization mass spectrometry (LDI-MS)-based metabolic diagnosis of gynecological cancers. The FeOOH@ZIF-8-assisted LDI-MS achieved rapid, sensitive, and selective metabolic fingerprints of the native serum without any enrichment or purification.

View Article and Find Full Text PDF