As bacterial contamination crises escalate, the development of advanced membranes possessing both high flux and antibacterial properties is of paramount significance for enhancing water sterilization efficiency. Herein, an ultrathin layer of TbPa (an imine-linked covalent organic framework) and nanosized CuO clusters, sequentially deposited onto polyethersulfone membranes, demonstrate exceptional water flux performance, reaching a permeance level of 16000 LHM bar. The deposited TbPa, generating uniformly distributed reduction sites under illumination, facilitates the uniform formation of CuO clusters.
View Article and Find Full Text PDFThe soybean mosaic disease-caused by the (SMV)-significantly impacts soybean quality and yield. Among its various strains, SMV-SC7 is prevalent in China. Therefore, rapid and accurate diagnosis is deemed critical to mitigate the spread of SMV-SC7.
View Article and Find Full Text PDFUnlabelled: The loss of major histocompatibility complex class I (MHC-I) molecules has been proposed as a mechanism by which cancer cells evade tumor-specific T cells in immune checkpoint inhibitor (ICI)-refractory patients. Nevertheless, the mechanism by which cancer cells downregulate MHC-I is poorly understood. We report here that membrane-associated RING-CH-type finger 8 (MARCHF8), upregulated by human papillomavirus (HPV), ubiquitinates and degrades MHC-I proteins in HPV-positive head and neck cancer (HPV+ HNC).
View Article and Find Full Text PDFA method for the efficient synthesis of chiral cycloallylalcohols has been developed, achieving excellent yields and enantioselectivities (>99% conversion, turnover number of ≤50 000, and >99% ee). This approach accommodates a variety of cycloalkenones with different aryl substituents and is tolerant of a broad range of functional groups. The synthetic utility of this method has been demonstrated through gram-scale synthesis and subsequent transformations into diverse enantioenriched oxygen-containing compounds.
View Article and Find Full Text PDFBackground: Most epidemiological studies of hidradenitis suppurativa (HS) have described homogeneous patient populations.
Objective: To characterize demographics, modifiable health behaviors, and comorbidities of HS patients within a diverse cohort.
Methods: A retrospective cross-sectional study of 13,130 HS patients within a health care system was conducted.
Covalent organic frameworks (COFs) have emerged as promising platforms for membrane separations, while remaining challenging for separating ions in a fast and selective way. Here, we propose a concept of COF membranes with vertically aligned nanorods for efficient separation of rare metal ions. A quaternary ammonium-functionalized monomer is rationally designed to synthesize COF layers on porous substrates via interfacial synthesis.
View Article and Find Full Text PDFGSK-3β plays a critical role in regulating the Wnt/β-catenin signaling pathway, and manipulating GSK-3β in dendritic cells (DCs) has been shown to improve the antitumor efficacy of DC vaccines. Since the inhibition of GSK-3β leads to the activation of β-catenin, we hypothesize that blocking GSK-3β in DCs negatively regulates DC-mediated CD8 T cell immunity and antitumor immunity. Using CD11c-GSK-3β conditional knockout mice in which GSK-3β is genetically deleted in CD11c-expressing DCs, we surprisingly found that the deletion of GSK-3β in DCs resulted in increased antitumor immunity, which contradicted our initial expectation of reduced antitumor immunity due to the presumed upregulation of β-catenin in DCs.
View Article and Find Full Text PDFHidradenitis suppurativa (HS) is a chronic inflammatory skin condition characterized by painful nodules, abscesses, and scarring, predominantly affecting intertriginous regions and it is often underdiagnosed. This study aimed to utilize single cell RNA and cell-surface protein sequencing (CITE-Seq) to delineate the immune composition of circulating cells in Hidradenitis suppurativa (HS) peripheral blood compared to healthy controls. CITE-Seq was used to analyze the gene and protein expression profiles of peripheral blood mononuclear cells (PBMCs) from 9 HS and 29 healthy controls.
View Article and Find Full Text PDF(SMV) represents one of the most devastating viral diseases affecting soybeans worldwide. Among its strains, SMV-SC15 is notable for its virulence, predominance, and widespread occurrence. Rapid and on-site diagnosis is important for controlling the spread of SMV-SC15.
View Article and Find Full Text PDFRecent studies have demonstrated that β-catenin in dendritic cells (DCs) serves as a key mediator in promoting both CD4 and CD8 T cell tolerance, although the mechanisms underlying how β-catenin exerts its functions remain incompletely understood. Here, we report that activation of β-catenin leads to the up-regulation of inhibitory molecule T-cell immunoglobulin and mucin domain 3 (Tim-3) in type 1 conventional DCs (cDC1s). Using a cDC1-targeted vaccine model with anti-DEC-205 engineered to express the melanoma antigen human gp100 (anti-DEC-205-hgp100), we demonstrated that CD11c-β-catenin mice exhibited impaired cross-priming and memory responses of gp100-specific CD8 T (Pmel-1) cells upon immunization with anti-DEC-205-hgp100.
View Article and Find Full Text PDF(SMV) is one of the main pathogens that can negatively affect soybean production and quality. To study the gene regulatory network of soybeans in response to SMV SC15, the resistant line X149 and susceptible line X97 were subjected to transcriptome analysis at 0, 2, 8, 12, 24, and 48 h post-inoculation (hpi). Differential expression analysis revealed that 10,190 differentially expressed genes (DEGs) responded to SC15 infection.
View Article and Find Full Text PDFAzobenzene, which activates its geometric and chemical structure under light stimulation enables noninvasive control of mass transport in many processes including membrane separations. However, producing azobenzene-decorated channels that have precise size tunability and favorable pore wall chemistry allowing fast and durable permeation to solvent molecules, remains a great challenge. Herein, an advanced membrane that comprises geometry and polarity gradients within covalent organic framework (COF) nanochannels utilizing photoisomerization of azobenzene groups is reported.
View Article and Find Full Text PDFTransition metal catalysts with a million turnovers and excellent selectivity are rarely reported but are crucial for the industrial manufacture of optical pure pharmaceuticals, natural products, and fine chemicals. In this paper, we report an unprecedented aninoic Ir-f-phamidol catalyst for asymmetric hydrogenation of γ-amino ketones followed by stereoselective cyclization for construction of valuable chiral 2-aryl-pyrrolidine pharmacophores. The Ir-f-phamidol catalyst showed up to 1,000,000 TON and >99% ee, as well as excellent tolerance of substrates and protecting groups, providing various chiral amino alcohol intermediates.
View Article and Find Full Text PDFLangerhans cells (LCs) are skin-resident macrophage that act similarly to dendritic cells for controlling adaptive immunity and immune tolerance in the skin, and they are key players in the development of numerous skin diseases. While TGF-β and related downstream signaling pathways are known to control numerous aspects of LC biology, little is known about the epigenetic signals that coordinate cell signaling during LC ontogeny, maintenance, and function. Our previous studies in a total miRNA deletion mouse model showed that miRNAs are critically involved in embryonic LC development and postnatal LC homeostasis; however, the specific miRNA(s) that regulate LCs remain unknown.
View Article and Find Full Text PDFDeveloping catalysts with both useful enantioselectivities and million turnover numbers (TONs) for asymmetric hydrogenation of ketones is attractive for industrial production of high-value bioactive chiral entities but remains a challenging. Herein, we report an ultra-efficient anionic Ir-catalyst integrated with the concept of multidentate ligation for asymmetric hydrogenation of ketones. Biocatalysis-like efficacy of up to 99% ee (enantiomeric excess), 13,425,000 TON (turnover number) and 224 s TOF (turnover frequency) were documented for benchmark acetophenone.
View Article and Find Full Text PDFUnlike conventional αβT cells, invariant natural killer T (iNKT) cells complete their terminal differentiation to functional iNKT1/2/17 cells in the thymus. However, underlying molecular programs that guide iNKT subset differentiation remain unclear. Here, we profiled the transcriptomes of over 17,000 iNKT cells and the chromatin accessibility states of over 39,000 iNKT cells across four thymic iNKT developmental stages using single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) to define their developmental trajectories.
View Article and Find Full Text PDFCovalent organic frameworks (COFs) have showcased great potential in diverse applications such as separation and catalysis, where mass transfer confined in their pore channels plays a significant role. However, anisotropic orientation usually occurs in polycrystalline COFs, and perpendicular alignment of COF pore channels is ultimately desired to maximize their performance. Herein, we demonstrate a strategy, solvent vapor annealing, to reorient COF pore channels from anisotropic orientation to perpendicular alignment.
View Article and Find Full Text PDFHER2-targeted therapy has improved breast cancer survival, but treatment resistance and disease prevention remain major challenges. Genes that enable HER2/Neu oncogenesis are the next intervention targets. A bioinformatics discovery platform of HER2/Neu-expressing Diversity Outbred (DO) F1 Mice was established to identify cancer-enabling genes.
View Article and Find Full Text PDFBackground: Hidradenitis suppurativa (HS) is a multifactorial, inflammatory skin disease. Increased systemic inflammatory comorbidities and serum cytokines highlight systemic inflammation as a feature of HS. However, the specific immune cell subsets contributing to systemic and cutaneous inflammation have not been resolved.
View Article and Find Full Text PDFIsoprenoids, a large kind of plant natural products, are synthesized by the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. As one of the rate-limiting enzymes in the MVA pathway of soybean (Glycine max), 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is encoded by eight isogenes (GmHMGR1-GmHMGR8). To begin, we used lovastatin (LOV), a specific inhibitor of GmHMGR, to investigate their role in soybean development.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2022
Solar energy-driven reduction of CO into fuels with HO as a sacrificial agent is a challenging but desirable subject in photosynthesis. Covalent organic frameworks (COFs) are considered promising candidates for this subject because of their designable structures and functions. The coordination of transition metal ions into COFs is a feasible way to boost the photocatalytic activity.
View Article and Find Full Text PDF