Publications by authors named "Cong-Hua Lu"

In addition to the classical resistance mechanisms, receptor tyrosine-protein kinase AXL is a main mechanism of resistance to third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI) osimertinib in EGFR-mutated non-small cell lung cancer (NSCLC). Developing an effective AXL inhibitor is important to sensitize osimertinib in clinical application. In this study we assessed the efficacy of brigatinib, a second-generation of anaplastic lymphoma kinase (ALK)-TKI, as a novel AXL inhibitor, in overcoming acquired resistance to osimertinib induced by AXL activation.

View Article and Find Full Text PDF

Purpose: This study aims to elucidate the electrotaxis response of alveolar epithelial cells (AECs) in direct-current electric fields (EFs), explore the impact of EFs on the cell fate of AECs, and lay the foundation for future exploitation of EFs for the treatment of acute lung injury.

Methods: AECs were extracted from rat lung tissues using magnetic-activated cell sorting. To elucidate the electrotaxis responses of AECs, different voltages of EFs (0, 50, 100, and 200 mV/mm) were applied to two types of AECs, respectively.

View Article and Find Full Text PDF

Purpose: Third-generation irreversible epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), rociletinib (CO-1686), is great efficacy against EGFR-mutated patients bearing the T790M resistance mutation. However, acquired resistance may emerge. There is a need to characterize acquired resistance mechanism(s) and to devise ways to overcome CO-1686 resistance.

View Article and Find Full Text PDF

Aim: Although EGFR tyrosine kinase inhibitors (TKIs) have shown dramatic effects against sensitizing EGFR mutations in non-small cell lung cancer (NSCLC), ~20%-30% of NSCLC patients with EGFR-sensitive mutation exhibit intrinsic resistance to EGFR-TKIs. The purpose of the current study was to investigate the enhanced antitumor effect of metformin (Met), a biguanide drug, in combination with gefitinib (Gef) in primary resistant human lung cancer cells and the associated molecular mechanism.

Experimental Design: H1975 cell line was treated with Met and/or Gef to examine the inhibition of cell growth and potential mechanism of action by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), Ki67 incorporation assay, flow cytometry analysis, small interfering RNA technology, Western blot analysis and xenograft implantation.

View Article and Find Full Text PDF

Stable, ultrathin DNA micropatterns were fabricated from photosensitive polymer diazoresin (DR) through a self-assembly technique. The micropatterns were achieved on LBL ultrathin film after UV exposure through a photomask. The patterns were characterized systematically with scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy and fluorescence microscopy.

View Article and Find Full Text PDF