Abnormal foot kinematics is observed in flatfoot subjects with postural foot deformity. We aimed to investigate joint instability in flatfoot subjects by analyzing the abnormal rotational position and speed of their joints while walking. Five flatfoot subjects participated in our study.
View Article and Find Full Text PDFThe kinematics of the human foot complex have been investigated to understand the weight bearing mechanism of the foot. This study aims to investigate midtarsal joint locking during walking by noninvasively measuring the movements of foot bones using a high-speed bi-planar fluoroscopic system. Eighteen healthy subjects volunteered for the study; the subjects underwent computed tomography imaging and bi-planar radiographs of the foot in order to measure the three-dimensional (3D) midtarsal joint kinematics using a 2D-to-3D registration method and anatomical coordinate system in each bone.
View Article and Find Full Text PDFForensic Sci Int
September 2018
Human motion during walking provides biometric information which can be utilized to quantify the similarity between two persons or identify a person. The purpose of this study was to develop a method for identifying a person using their walking motion when another walking motion under different conditions is given. This type of situation occurs frequently in forensic gait science.
View Article and Find Full Text PDFJoint contact forces measured with instrumented knee implants have not only revealed general patterns of joint loading but also showed individual variations that could be due to differences in anatomy and joint kinematics. Musculoskeletal human models for dynamic simulation have been utilized to understand body kinetics including joint moments, muscle tension, and knee contact forces. The objectives of this study were to develop a knee contact model which can predict knee contact forces using an inverse dynamics-based optimization solver and to investigate the effect of joint constraints on knee contact force prediction.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
November 2015
Purpose: Anatomical landmarks and bony features are frequently used in biomechanical and surgical applications. The purpose of this study was to develop a local region matching-based anatomical landmark prediction method.
Methods: A reference femur model with anatomical landmarks and a surface division map was prepared.