Publications by authors named "Cong Thuc Le"

Backgruound: Hepatic stellate cells (HSCs) are the major cells which play a pivotal role in liver fibrosis. During injury, extracellular stimulators can induce HSCs transdifferentiated into active form. Phloretin showed its ability to protect the liver from injury, so in this research we would like to investigate the effect of phloretin on succinate-induced HSCs activation in vitro and liver fibrosis in vivo study.

View Article and Find Full Text PDF

Background: Hepatic stellate cells (HSCs) are known to play a fundamental role in the progression of liver fibrosis. Once HSCs are activated, they are involved in proliferation, migration, and contractility which are characteristics of liver fibrogenesis. Recent studies have shown that irisin, a myokine secreted during physical exercise, has a protective effect in various metabolic diseases, especially in renal fibrosis.

View Article and Find Full Text PDF

Fibroblast growth factor 21 (FGF21) is an important metabolic regulator expressed predominantly in the liver. In this study, we evaluated the role of LY2405319, an analogue of FGF21, in hepatic stellate cell (HSC) activation and in a methionine and choline-deficient (MCD)-diet induced mouse model of liver fibrosis. During liver injury, HSCs trans-differentiate into activated myofibroblasts which produce alpha-smooth muscle actin (α-SMA) and become a major cell type in hepatic fibrogenesis.

View Article and Find Full Text PDF

Liver fibrosis is a progressive pathological process that accompanies wound healing; however, therapeutics for reversing hepatic fibrosis are unavailable. Activation of hepatic stellate cells (HSCs) play a critical role in liver fibrosis. Recent reports showed that succinate and its receptor, G-protein coupled receptor 91 (GPR91), act as signaling molecules during the activation of HSCs.

View Article and Find Full Text PDF

Background: Chronic liver disease is becoming a major cause of morbidity and mortality worldwide. During liver injury, hepatic stellate cells (HSCs) trans-differentiate into activated myofibroblasts, which produce extracellular matrix. Succinate and succinate receptor (G-protein coupled receptor91, GPR91) signaling pathway has now emerged as a regulator of metabolic signaling.

View Article and Find Full Text PDF