New homo-sesquiterpenes are accessible after conversion of presilphiperfolan-8β-ol synthase (BcBOT2) with cyclopropylmethyl analogs of farnesyl diphosphate, and this biotransformation is dependent on subtle structural refinements. Two of the three cyclisation products are homo variants of germacrene D and germacrene D-4-ol while the third product reported contains a new bicyclic backbone for which no analogue in nature has been described so far. The findings on diphosphate activation are discussed and rationalised by relaxed force constants and dissociation energies computed at the DFT level of theory.
View Article and Find Full Text PDFIn the midst of the COVID-19 pandemic, contact-tracing apps have emerged as reliable tools for public health communication and the promotion of preventative health. However, to function properly, contact-tracing apps require users to provide sensitive information, which has raised concerns about data disclosure, misuse and social surveillance. Little is known about how different types of risk perception simultaneously hinder and motivate individuals' engagement in mobile health apps, particularly in the context of a pandemic.
View Article and Find Full Text PDFNew sesquiterpene backbones are accessible after biotransformation of presilphiperfolan-8β-ol synthase (BcBOT2), a fungal sesquiterpene synthase, with non-natural farnesyldiphosphates in which methyl groups are shifted by one position toward the diphosphate terminus. One of the macrocycles formed, a new germacrene A derivative, undergoes a Cope rearrangement to iso-β-elemene. Three of the new terpenoids show olfactoric properties that range from an intense peppery note to a citrus, ozone-like, and fruity scent.
View Article and Find Full Text PDF