The fungal cell wall serves as the interface between the cell and the environment. Fungal cell walls are composed largely of polysaccharides, primarily glucans and chitin, though in many fungi stress-resistant cell types elaborate additional cell wall structures. Here, we use solid-state nuclear magnetic resonance spectroscopy to compare the architecture of cell wall fractions isolated from spores and melanized cells.
View Article and Find Full Text PDFHeat shock protein 90 (Hsp90) is an essential eukaryotic molecular chaperone. To properly chaperone its clientele, Hsp90 proceeds through an ATP-dependent conformational cycle influenced by posttranslational modifications (PTMs) and assisted by a number of co-chaperone proteins. Although Hsp90 conformational changes in solution have been well-studied, regulation of these complex dynamics in cells remains unclear.
View Article and Find Full Text PDFThe spore wall of Saccharomyces cerevisiae is a multilaminar extracellular structure that is formed de novo in the course of sporulation. The outer layers of the spore wall provide spores with resistance to a wide variety of environmental stresses. The major components of the outer spore wall are the polysaccharide chitosan and a polymer formed from the di-amino acid dityrosine.
View Article and Find Full Text PDFIsocostunolide is a sesquiterpene lactone isolated from the roots of Inula helenium. Its chemical structure was determined by NMR and FAB-MS spectra. No biological activities of this compound have yet been reported.
View Article and Find Full Text PDFEvid Based Complement Alternat Med
June 2005
SARS-CoV is the causative agent of severe acute respiratory syndrome (SARS). The virally encoded 3C-like protease (3CL(Pro)) has been presumed critical for the viral replication of SARS-CoV in infected host cells. In this study, we screened a natural product library consisting of 720 compounds for inhibitory activity against 3CL(Pro).
View Article and Find Full Text PDF3C-like (3CL) protease is essential for the life cycle of severe acute respiratory syndrome-coronavirus (SARS-CoV) and therefore represents a key anti-viral target. A compound library consisting of 960 commercially available drugs and biologically active substances was screened for inhibition of SARS-CoV 3CL protease. Potent inhibition was achieved using the mercury-containing compounds thimerosal and phenylmercuric acetate, as well as hexachlorophene.
View Article and Find Full Text PDFA cDNA fragment encoding cystatin, a cysteine protease inhibitor, was obtained from maturing sesame seeds. The clone was constructed in a nonfusion or fusion vector and then overexpressed in Escherichia coli. The recombinant cystatins were found in the soluble fraction of cell extract and were demonstrated to be functionally active in a reverse zymographic assay.
View Article and Find Full Text PDF