Inhibition of SARS-CoV-2 membrane fusion is a highly desired target to combat COVID-19. The interaction between the spike's heptad repeat (HR) regions 1 (HR1) and 2 (HR2) is a crucial step during the fusion process and these highly conserved HR regions constitute attractive targets for fusion inhibitors. However, the relative importance of each subregion of the long HR1-HR2 interface for viral inhibition remains unclear.
View Article and Find Full Text PDFThe formation of highly organized metal-DNA structures has significant implications in bioinorganic chemistry, molecular biology and material science due to their unique properties and potential applications. In this study, we report on the conversion of single-stranded polydeoxycytidine (dC ) into a Pd-DNA supramolecular structure using the [Pd(Aqa)] complex (Aqa=8-amino-4-hydroxyquinoline-2-carboxylic acid) through a self-assembly process. The resulting Pd-DNA assembly closely resembles a natural double helix, with continuous [Pd(Aqa)(C)] (C=cytosine) units serving as palladium-mediated base pairs, forming interbase hydrogen bonds and intrastrand stacking interactions.
View Article and Find Full Text PDFSince the beginning of the COVID-19 pandemic, considerable efforts have been made to develop protective vaccines against SARS-CoV-2 infection. However, immunity tends to decline within a few months, and new virus variants are emerging with increased transmissibility and capacity to evade natural or vaccine-acquired immunity. Therefore, new robust strategies are needed to combat SARS-CoV-2 infection.
View Article and Find Full Text PDFAmyloid aggregation is a hallmark in many neuropathologies and other diseases of tremendous impact. It is increasingly evident that neuronal death associated with Alzheimer's disease (AD) is mainly produced by oligomers of the amyloid-β (Aβ) peptide. Yet little is known about the detailed structural and biophysical mechanisms of their formation.
View Article and Find Full Text PDFSARS-CoV-2 spike (S) protein mediates virus attachment to the cells and fusion between viral and cell membranes. Membrane fusion is driven by mutual interaction between the highly conserved heptad-repeat regions 1 and 2 (HR1 and HR2) of the S2 subunit of the spike. For this reason, these S2 regions are interesting therapeutic targets for COVID-19.
View Article and Find Full Text PDFInhibition of the HIV-1 fusion process constitutes a promising strategy to neutralize the virus at an early stage before it enters the cell. In this process, the envelope glycoprotein (Env) plays a central role by promoting membrane fusion. We previously identified a vulnerability at the flexible C-terminal end of the gp41 C-terminal heptad repeat (CHR) region to inhibition by a single-chain miniprotein (named covNHR-N) that mimics the first half of the gp41 N-terminal heptad repeat (NHR).
View Article and Find Full Text PDFDuring HIV-1 infection, the envelope glycoprotein subunit gp41 folds into a six-helix bundle structure (6HB) formed by the interaction between its N-terminal (NHR) and C-terminal (CHR) heptad-repeats, promoting viral and cell membranes fusion. A highly preserved, hydrophobic pocket (HP) on the NHR surface is crucial in 6HB formation and, therefore, HP-binding compounds constitute promising therapeutics against HIV-1. Here, we investigated the conformational and dynamic properties of the HP using a rationally designed single-chain protein (named covNHR) that mimics the gp41 NHR structure.
View Article and Find Full Text PDFThe formation of fibrillar aggregates of the amyloid beta peptide (Aβ) in the brain is one of the hallmarks of Alzheimer's disease (AD). A clear understanding of the different aggregation steps leading to fibrils formation is a keystone in therapeutics discovery. In a recent study, we showed that Aβ40 and Aβ42 form dynamic micellar aggregates above certain critical concentrations, which mediate a fast formation of more stable oligomers, which in the case of Aβ40 are able to evolve towards amyloid fibrils.
View Article and Find Full Text PDFA promising strategy to neutralize HIV-1 is to target the gp41 spike subunit to block membrane fusion with the cell. We previously designed a series of single-chain proteins (named covNHR) that mimic the trimeric coiled-coil structure of the gp41 N-terminal heptad repeat (NHR) region and potently inhibit HIV-1 cell infection by avidly binding the complementary C-terminal heptad repeat (CHR) region. These proteins constitute excellent tools to understand the structural and thermodynamic features of this therapeutically important interaction.
View Article and Find Full Text PDFProtein therapeutics have a major role in medicine in that they are used to treat diverse pathologies. Their three-dimensional structures not only offer higher specificity and lower toxicity than small organic compounds but also make them less stable, limiting their half-life. Protein analogues obtained by recombinant DNA technology or by chemical modification and/or the use of drug delivery vehicles has been adopted to improve or modulate the pharmacological activity of proteins.
View Article and Find Full Text PDFOne of the therapeutic strategies in HIV neutralization is blocking membrane fusion. In this process, tight interaction between the N-terminal and C-terminal heptad-repeat (NHR and CHR) regions of gp41 is essential to promote membranes apposition and merging. We have previously developed single-chain proteins (named covNHR) that accurately mimic the complete gp41 NHR region in its trimeric conformation.
View Article and Find Full Text PDFHIV-1 glycoprotein 41 (gp41) mediates fusion between virus and target cells by folding into a fusion active state, in which the C-terminal heptad repeat (CHR) regions associate externally to the N-terminal heptad repeat (NHR) trimer and form a very stable six-helix bundle coiled-coil structure. Therefore, interfering with the NHR-CHR interaction of gp41 is a promising therapeutic approach against HIV-1. However, a full understanding of the molecular and mechanistic details of this interaction is still incomplete.
View Article and Find Full Text PDFBiochim Biophys Acta Proteins Proteom
November 2019
Protein amyloid aggregation is a hallmark in neuropathologies and other diseases of tremendous impact such as Alzheimer's or Parkinson's diseases. During the last decade, it has become increasingly evident that neuronal death is mainly induced by proteinaceous oligomers rather than the mature amyloid fibrils. Therefore, the earliest molecular events occurring during the amyloid aggregation cascade represent a growing interest of study.
View Article and Find Full Text PDFDevelopment of effective inhibitors of the fusion between HIV-1 and the host cell membrane mediated by gp41 continues to be a grand challenge due to an incomplete understanding of the molecular and mechanistic details of the fusion process. We previously developed single-chain, chimeric proteins (named covNHR) that accurately mimic the N-heptad repeat (NHR) region of gp41 in a highly stable coiled-coil conformation. These molecules bind strongly to peptides derived from the gp41 C-heptad repeat (CHR) and are potent and broad HIV-1 inhibitors.
View Article and Find Full Text PDFA deep understanding of the early molecular mechanism of amyloid beta peptides (Aβ) is crucial to develop therapeutic and preventive approaches for Alzheimer's disease (AD). Using a variety of biophysical techniques, we have found that micelle-like dynamic oligomers are rapidly formed by Aβ40 and Aβ42 above specific critical concentrations. Analysis of the initial aggregation rates at 37 °C measured by thioflavin T and Bis-ANS fluorescence using a mass-action micellization model revealed a concentration-dependent switch in the nucleation mechanism.
View Article and Find Full Text PDFMutations or cellular conditions that destabilize the native protein conformation promote the population of partially unfolded conformations, which in many cases assemble into insoluble amyloid fibrils, a process associated with multiple human pathologies. Therefore, stabilization of protein structures is seen as an efficient way to prevent misfolding and subsequent aggregation. This has been suggested to be the underlying reason why proteins living in harsh environments, such as the extracellular space, have evolved disulfide bonds.
View Article and Find Full Text PDFThe biological function of α-Synuclein has been related to binding to lipids and membranes but these interactions can also mediate α-Synuclein aggregation, which is associated to Parkinson's disease and other neuropathologies. In brain tissue α-Synuclein is constitutively N-acetylated, a modification that plays an important role in its conformational propensity, lipid and membrane binding, and aggregation propensity. We studied the interactions of the lipid-mimetic SDS with N-acetylated and non-acetylated α-Synuclein, as well as their early-onset Parkinson's disease variants A30P, E46K and A53T.
View Article and Find Full Text PDFPersistent B cell responses in mucosal tissues are crucial to control infection against sexually transmitted pathogens like human immunodeficiency virus 1 (HIV-1). The genital tract is a major site of infection by HIV. Sublingual (SL) immunization in mice was previously shown to generate HIV-specific B cell immunity that disseminates to the genital tract.
View Article and Find Full Text PDFThe HIV gp41 ectodomain (e-gp41) is an attractive target for the development of vaccines and drugs against HIV because of its crucial role in viral fusion to the host cell. However, because of the high insolubility of e-gp41, most biophysical and structural analyses have relied on the production of truncated versions removing the loop region of gp41 or the utilization of nonphysiological solubilizing conditions. The loop region of gp41 is also known as principal immunodominant domain (PID) because of its high immunogenicity, and it is essential for gp41-mediated HIV fusion.
View Article and Find Full Text PDFDuring HIV-1 fusion to the host cell membrane, the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) of the envelope subunit gp41 become transiently exposed and accessible to fusion inhibitors or Abs. In this process, the NHR region adopts a trimeric coiled-coil conformation that can be a target for therapeutic intervention. Here, we present an approach to rationally design single-chain protein constructs that mimic the NHR coiled-coil surface.
View Article and Find Full Text PDFUnderstanding the early molecular mechanisms governing amyloid aggregation is crucial to learn how to prevent it. Here, we used a site-directed mutagenesis approach to explore the molecular mechanism of nucleation of amyloid structure in the N47A Spc-SH3 domain. The changes in the native state stability produced by a series of mutations on each structural element of the domain were uncorrelated with the changes in the aggregation rates, although the overall aggregation mechanism was not altered.
View Article and Find Full Text PDFImmunotherapies and vaccines based on the induction of broadly neutralizing monoclonal antibodies (bNAbs) have become outstanding strategies against HIV-1. Diverse bNAbs recognizing different regions of the HIV-1 envelope have been identified and extensively studied. However, there is little information about the thermodynamics of binding of these bNAbs and their epitopes.
View Article and Find Full Text PDFA deep understanding of the physicochemical factors modulating amyloid aggregation of proteins is crucial to develop therapeutic and preventive approaches for amyloid-related diseases. The earliest molecular events of the aggregation cascade represent some of the main targets as indicated by the toxic nature of certain early oligomers. Here, we study how different types of salt ions influence the kinetics of amyloid assembly of the N47A mutant α-spectrin SH3 domain using a battery of techniques.
View Article and Find Full Text PDFUnderstanding the earliest molecular events during nucleation of the amyloid aggregation cascade is of fundamental significance to prevent amyloid related disorders. We report here an experimental kinetic analysis of the amyloid aggregation of the N47A mutant of the α-spectrin SH3 domain (N47A Spc-SH3) under mild acid conditions, where it is governed by rapid formation of amyloid nuclei. The initial rates of formation of amyloid structures, monitored by thioflavine T fluorescence at different protein concentrations, agree quantitatively with high-order kinetics, suggesting an oligomerization pre-equilibrium preceding the rate-limiting step of amyloid nucleation.
View Article and Find Full Text PDFSH3 domains are small protein modules that mediate the assembly of specific protein complexes, typically via binding to proline-rich sequences in their respective binding partners. Most of the α-spectrin SH3-domain (Spc-SH3) structures determined to date using X-ray diffraction have been solved from crystals belonging to the orthorhombic space group P2(1)2(1)2(1) with a needle-like morphology. All of these orthorhombic crystals exhibited a rapid growth rate.
View Article and Find Full Text PDF