Voltage-dependent potassium (Kv) channels contribute to the excitability of nerves and muscles. In addition, Kv participates in several cell functions, including cell cycle progression and proliferation. Kv channel remodeling has been associated with neoplastic cell growth and cancer.
View Article and Find Full Text PDFObjective: To describe the initial experiencein our center on targeted prostate biopsies (TB) using Magnetic Resonance imaging/ultrasonography (MRI/US) fusion and to compare PCa detection with systematic biopsies (SB).
Patients And Me Thods: A retrospective, descriptive and comparative study was conducted on the first 94 men who underwent TB using MRU/US fusion in our center since February 2017 to March 2018. All patients underwent a protocol of 6-12 cores of systematic biopsies (SB) (except 9) and 2-6 targeted coreson the MRI index lesion.
Voltage-gated potassium channels (Kv) are the largest group of ion channels. Kv are involved in controlling the resting potential and action potential duration in the heart and brain. Additionally, these proteins participate in cell cycle progression as well as in several other important features in mammalian cell physiology, such as activation, differentiation, apoptosis, and cell volume control.
View Article and Find Full Text PDFWe aimed to maximize the performance of detecting genetic alterations in lung cancer using high-throughput sequencing for patient-derived xenografts (PDXs). We undertook an integrated RNA and whole-exome sequencing of 14 PDXs. We focused on the genetic and functional analysis of β2-microglobulin (B2M), a component of the HLA class-I complex.
View Article and Find Full Text PDFComponents of the SWI/SNF chromatin remodeling complex, including BRG1 (also SMARCA4), are inactivated in cancer. Among other functions, SWI/SNF orchestrates the response to retinoid acid (RA) and glucocorticoids (GC) involving downregulation of MYC. The epigenetic drugs SAHA and azacytidine, as well as RA and GC, are currently being used to treat some malignancies but their therapeutic potential in lung cancer is not well established.
View Article and Find Full Text PDFBackground: Atherosclerosis severity-independent alterations in DNA methylation, a reversible and highly regulated DNA modification, have been detected in aortic atheromas, thus supporting the hypothesis that epigenetic mechanisms participate in the pathogenesis of atherosclerosis. One yet unaddressed issue is whether the progression of atherosclerosis is associated with an increase in DNA methylation drift in the vascular tissue. The purpose of the study was to identify CpG methylation profiles that vary with the progression of atherosclerosis in the human aorta.
View Article and Find Full Text PDFCorrect apicobasal polarization and intercellular adhesions are essential for the appropriate development of normal epithelia. Here, we investigated the contribution of the cell polarity regulator PARD3 to the development of lung squamous cell carcinomas (LSCC). Tumor-specific PARD3 alterations were found in 8% of LSCCs examined, placing PARD3 among the most common tumor suppressor genes in this malignancy.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
April 2015
Objective: Marfan's syndrome is characterized by the formation of ascending aortic aneurysms resulting from altered assembly of extracellular matrix microfibrils and chronic tissue growth factor (TGF)-β signaling. TGF-β is a potent regulator of the vascular smooth muscle cell (VSMC) phenotype. We hypothesized that as a result of the chronic TGF-β signaling, VSMC would alter their basal differentiation phenotype, which could facilitate the formation of aneurysms.
View Article and Find Full Text PDFBackground: One of the problems in prostate cancer (CaP) treatment is the appearance of the multidrug resistance phenotype, in which ATP-binding cassette transporters such as multidrug resistance protein 1 (MRP1) play a role. Different localizations of the transporter have been reported, some of them related to the chemoresistant phenotype.
Aim: This study aimed to compare the localization of MRP1 in three prostate cell lines (normal, androgen-sensitive, and androgen-independent) in order to understand its possible role in CaP chemoresistance.
Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer.
View Article and Find Full Text PDFEndometriosis, defined as the growth of endometrial tissue outside the uterus, is a common gynecologic condition affecting millions of women worldwide. It is an inflammatory, estrogen-dependent complex disorder, with broad symptomatic variability, pelvic pain, and infertility being the main characteristics. Ovarian endometriomas are frequently developed in women with endometriosis.
View Article and Find Full Text PDFBackground: Epigenetic alterations may contribute to the development of atherosclerosis. In particular, DNA methylation, a reversible and highly regulated DNA modification, could influence disease onset and progression because it functions as an effector for environmental influences, including diet and lifestyle, both of which are risk factors for cardiovascular diseases.
Methods And Results: To address the role of DNA methylation changes in atherosclerosis, we compared a donor-matched healthy and atherosclerotic human aorta sample using whole-genome shotgun bisulfite sequencing.
Arterioscler Thromb Vasc Biol
July 2014
Objective: Voltage-dependent K(+) (Kv) channels from the Kv7 family are expressed in blood vessels and contribute to cardiovascular physiology. Although Kv7 channel blockers trigger muscle contractions, Kv7 activators act as vasorelaxants. Kv7.
View Article and Find Full Text PDFMediators Inflamm
December 2014
One of the strategies used by tumors to evade immunosurveillance is the accumulation of extracellular adenosine, which has immunosupressive and tumor promoting effects. The study of the mechanisms leading to adenosine formation at the tumor interstitium are therefore of great interest in oncology. The dominant pathway generating extracellular adenosine in tumors is the dephosphorylation of ATP by ecto-nucleotidases.
View Article and Find Full Text PDFPurpose: We examined whether PI3K-AKT or extracellular signal-regulated kinase (ERK) signaling pathways could play a role in the development of cisplatin (CDDP) resistance in testicular germ cell tumor (TGT) cells.
Experimental Design: We compared AKT and ERK activation levels in CDDP-sensitive testicular tumor cells and in their corresponding CDDP-resistant-derived cells. We also analyzed these pathways in orthotopic testicular tumors and human patient samples.
Objective: The objective of this study is to chemosensitize ovarian cancer (OVCa) cells to cisplatin (CDDP) using an inhibitor of Survivin, YM155. The efficacy of YM155 in combination with CDDP was determined in vitro, ex vivo and in vivo.
Methods: Human OVCa cell lines A2780p and their cisplatin-resistant derivative A2780cis, were treated with CDDP, YM155, and the combined treatment (YM155+CDDP), and cell viability, mRNA and protein expression levels, cell-cycle distribution, and DNA damage were then evaluated.
Voltage-dependent K(+) channels (Kv) are involved in a number of physiological processes, including immunomodulation, cell volume regulation, apoptosis as well as differentiation. Some Kv channels participate in the proliferation and migration of normal and tumor cells, contributing to metastasis. Altered expression of Kv1.
View Article and Find Full Text PDFBackground: Cisplatin (CDDP) resistance in testicular germ cell tumors (GCTs) is still a clinical challenge, and one associated with poor prognosis. The purpose of this work was to test pazopanib, an anti-tumoral and anti-angiogenic multikinase inhibitor, and its combination with lapatinib (an anti-ErbB inhibitor) in mouse orthotopic models of human testicular GCTs.
Methods: We used two different models of human testicular GCTs orthotopically grown in nude mice; a CDDP-sensitive choriocarcinoma (TGT38) and a new orthotopic model generated from a metastatic GCT refractory to first-line CDDP chemotherapy (TGT44).
Kv, which play a role in the immune system, are remodeled during carcinogenesis. Leukocytes present a limited Kv repertoire, with Kv1.3 and Kv1.
View Article and Find Full Text PDFIn this work, we have analyzed the expression of different members of the ErbB family in human samples of testicular germ cell tumors (GCTs). We observed expression of ErbB1 or ErbB2 in different tumor subtypes, but we also found high expression of ErbB3 in all GCTs tested. This pattern of expression was maintained when primary tumors were orthotopically implanted in nude mice.
View Article and Find Full Text PDFExtracellular ATP and its hydrolysis product, adenosine, acting through specific receptors collectively named purinergic receptors, regulate female fertility by influencing the endometrial fluid microenvironment. There are four major groups of ecto-nucleotidases that control the levels of extracellular ATP and adenosine and thus their availability at purinergic receptors: ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-nucleotide pyrophosphatase/phospho-diesterases (E-NPPs), ecto-5'-nucleotidase (5'NT), and alkaline phosphatases (APs). The aim of the present work is to characterize the expression and distribution of ecto-nucleotidases in human endometrium along the menstrual cycle and after menopause, to evaluate their potential utility as fertility markers.
View Article and Find Full Text PDFOvarian cancer (OVCa) is the leading cause of death from gynecological malignancies. Although treatment for advanced OVCa has improved with the introduction of taxane-platinum chemotherapy, the majority of patients will develop resistance to the treatment, leading to poor prognosis. One of the causes of chemoresistance is the reduced ability to undergo apoptosis.
View Article and Find Full Text PDF