At the liquid-gas phase transition in water, the density has a discontinuity at atmospheric pressure; however, the line of these first-order transitions defined by increasing the applied pressure terminates at the critical point, a concept ubiquitous in statistical thermodynamics. In correlated quantum materials, it was predicted and then confirmed experimentally that a critical point terminates the line of Mott metal-insulator transitions, which are also first-order with a discontinuous charge carrier density. In quantum spin systems, continuous quantum phase transitions have been controlled by pressure, applied magnetic field and disorder, but discontinuous quantum phase transitions have received less attention.
View Article and Find Full Text PDFBaFeSe is a potential superconductor material exhibiting transition at 11 K and ambient pressure. Here we extended the structural and performed electrical resistivity measurements on this compound up to 51 GPa and 20 GPa, respectively, in order to distinguish if the superconductivity in this sample is intrinsic to the BaFeSe phase or if it is originating from minor FeSe impurities that show a similar superconductive transition temperature. The electrical resistance measurements as a function of pressure show that at 5 GPa the superconducting transition is observed at around 10 K, similar to the one previously observed for this sample at ambient pressure.
View Article and Find Full Text PDFUsing soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of T_{d}-MoTe_{2}. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the experimental data with theoretical calculations.
View Article and Find Full Text PDFWe report muon-spin rotation and neutron-scattering experiments on nonmagnetic Zn impurity effects on the static spin-stripe order and superconductivity of the La214 cuprates. Remarkably, it was found that, for samples with hole doping x≈1/8, the spin-stripe ordering temperature T_{so} decreases linearly with Zn doping y and disappears at y≈4%, demonstrating a high sensitivity of static spin-stripe order to impurities within a CuO_{2} plane. Moreover, T_{so} is suppressed by Zn in the same manner as the superconducting transition temperature T_{c} for samples near optimal hole doping.
View Article and Find Full Text PDFThe Weyl semimetal phase is a recently discovered topological quantum state of matter characterized by the presence of topologically protected degeneracies near the Fermi level. These degeneracies are the source of exotic phenomena, including the realization of chiral Weyl fermions as quasiparticles in the bulk and the formation of Fermi arc states on the surfaces. Here, we demonstrate that these two key signatures show distinct evolutions with the bulk band topology by performing angle-resolved photoemission spectroscopy, supported by first-principles calculations, on transition-metal monophosphides.
View Article and Find Full Text PDFIn the past years, magnetism-driven ferroelectricity and gigantic magnetoelectric effects have been reported for a number of frustrated magnets featuring ordered spiral magnetic phases. Such materials are of high-current interest due to their potential for spintronics and low-power magnetoelectric devices. However, their low-magnetic ordering temperatures (typically <100 K) greatly restrict their fields of application.
View Article and Find Full Text PDFWe investigate the band structure of BaBiO_{3}, an insulating parent compound of doped high-T_{c} superconductors, using in situ angle-resolved photoemission spectroscopy on thin films. The data compare favorably overall with density functional theory calculations within the local density approximation, demonstrating that electron correlations are weak. The bands exhibit Brillouin zone folding consistent with known BiO_{6} breathing distortions.
View Article and Find Full Text PDFAlkali metal intercalated iron selenide superconductors A x Fe2-y Se2 (where A = K, Rb, Cs, Tl/K, and Tl/Rb) are characterized by several unique properties, which were not revealed in other superconducting materials. The compounds crystallize in overall simple layered structure with FeSe layers intercalated with alkali metal. The structure turned out to be pretty complex as the existing Fe-vacancies order below ~550 K, which further leads to an antiferromagnetic ordering with Néel temperature fairly above room temperature.
View Article and Find Full Text PDFA Weyl semimetal possesses spin-polarized band-crossings, called Weyl nodes, connected by topological surface arcs. The low-energy excitations near the crossing points behave the same as massless Weyl fermions, leading to exotic properties like chiral anomaly. To have the transport properties dominated by Weyl fermions, Weyl nodes need to locate nearly at the chemical potential and enclosed by pairs of individual Fermi surfaces with non-zero Fermi Chern numbers.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2015
Magnetic susceptibility χ of Bi2-x Mn x Se3 (x = 0.01-0.2) was measured in the temperature range 4.
View Article and Find Full Text PDFIn this work, we present a new chemical route to synthesize Tm2Mn2O7 pyrochlore, which a compound that is thermodynamically unstable at ambient pressure. Differently from the reported in the past high-pressure synthesis of the same compound applying oxides as starting materials, we have obtained a pure Tm2Mn2O7 phase by a converting TmMnO3 at 1100 °C and an oxygen pressure of 1300 bar. The studies of Tm2Mn2O7 performed by a high-resolution neutron powder diffraction have shown that a pure pyrochlore cubic phase Tm2Mn2O7 (space group Fd3¯m) have been obtained.
View Article and Find Full Text PDFThe crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours.
View Article and Find Full Text PDFThe temperature dependence of the gapped triplet excitations (triplons) in the 2D Shastry-Sutherland quantum magnet SrCu(2)(BO(3))(2) is studied by means of inelastic neutron scattering. The excitation amplitude rapidly decreases as a function of temperature, while the integrated spectral weight can be explained by an isolated dimer model up to 10 K. Analyzing this anomalous spectral line shape in terms of damped harmonic oscillators shows that the observed damping is due to a two-component process: one component remains sharp and resolution limited while the second broadens.
View Article and Find Full Text PDFLarge negative oxygen-isotope (^{16}O and ^{18}O) effects (OIEs) on the static spin-stripe-ordering temperature T_{so} and the magnetic volume fraction V_{m} were observed in La_{2-x}Ba_{x}CuO_{4}(x=1/8) by means of muon-spin-rotation experiments. The corresponding OIE exponents were found to be α_{T_{so}}=-0.57(6) and α_{V_{m}}=-0.
View Article and Find Full Text PDFTopological Kondo insulators have been proposed as a new class of topological insulators in which non-trivial surface states reside in the bulk Kondo band gap at low temperature due to strong spin-orbit coupling. In contrast to other three-dimensional topological insulators, a topological Kondo insulator is truly bulk insulating. Furthermore, strong electron correlations are present in the system, which may interact with the novel topological phase.
View Article and Find Full Text PDFJ Phys Condens Matter
May 2014
We report superconductivity at T(c) ≈ 2.6 K in a new layered bismuth oxyselenide LaO(0.5)F(0.
View Article and Find Full Text PDFJ Phys Condens Matter
October 2013
The local structure and the electronic properties of FeSe under hydrostatic pressure were studied by means of dispersive x-ray absorption measurements at the Fe K-edge. The pressure dependence of the x-ray absorption near edge structure features seems to follow the behavior of the superconducting transition temperature Tc. The local structure, that has an important impact on the superconducting properties, appears to fall into two regimes: the pressure dependence of the Fe-Fe bond distance shows a clear change in the compressibility at p ∼ 5 GPa; in contrast, the Fe-Se bond distance decreases continuously with increasing pressure with a lower compressibility than the Fe-Fe bond.
View Article and Find Full Text PDFBaFe2Se3 (Pnma, CsAg2I3-type structure), recently assumed to show superconductivity at ~11 K, exhibits a pressure-dependent structural transition to the CsCu2Cl3-type structure (Cmcm space group) around 60 kbar, as evidenced from pressure-dependent synchrotron powder diffraction data. Temperature-dependent synchrotron powder diffraction data indicate an evolution of the room-temperature BaFe2Se3 structure towards a high-symmetry CsCu2Cl3 form upon heating. Around 425 K BaFe2Se3 undergoes a reversible, first-order isostructural transition, which is supported by the differential scanning calorimetry data.
View Article and Find Full Text PDFBased on high-field (31)P nuclear magnetic resonance experiments and accompanying numerical calculations, it is argued that in the frustrated S=1/2 ladder compound BiCu(2)PO(6) a field-induced soliton lattice develops above a critical field of μ(0)H(c1)=20.96(7) T. Solitons result from the fractionalization of the S=1, bosonlike triplet excitations, which in other quantum antiferromagnets are commonly known to experience Bose-Einstein condensation or to crystallize in a superstructure.
View Article and Find Full Text PDFWe report the low-temperature electronic and magnetic properties of the alkali metal-organic solvent intercalated iron selenide superconductor Li(C5H5N)0.2Fe2Se2 using muon-spin-spectroscopy measurements. The zero-field muon spin relaxation (μSR) results indicate that nearly half of the sample is magnetically ordered and spatially phase separated from the superconducting region.
View Article and Find Full Text PDFThe crystal and magnetic structures of the superconducting iron-based chalcogenides Rb(y)Fe(2-x)Se(2) have been studied by means of single-crystal synchrotron x-ray and high-resolution neutron powder diffraction in the temperature range 2-570 K. The ground state of the crystal is an intrinsically phase-separated state with two distinct-by-symmetry phases. The main phase has the iron vacancy ordered √5 × √5 superstructure (I4/m space group) with AFM ordered Fe spins.
View Article and Find Full Text PDFWe report on a new iron selenide superconductor with a T(c) onset of 45 K and the nominal composition Li(x)(C(5)H(5)N)(y)Fe(2-z)Se(2), synthesized via intercalation of dissolved alkaline metal in anhydrous pyridine at room temperature. This superconductor exhibits a broad transition, reaching zero resistance at 10 K. Magnetization measurements reveal a superconducting shielding fraction of approximately 30%.
View Article and Find Full Text PDFTemperature-dependent synchrotron powder diffraction on Cs(0.83)(Fe(0.86)Se)(2) revealed first-order I4/m to I4/mmm structural transformation around 216 °C associated with a disorder of the Fe vacancies.
View Article and Find Full Text PDF