Publications by authors named "Condemine G"

ArcZ is a small regulatory RNA conserved in It is an Hfq-dependent RNA that is cleaved by RNase E in a processed form of 55-60 nucleotides. This processed form is highly conserved for controlling the expression of target mRNAs. ArcZ expression is induced by abundant oxygen levels and reaches its peak during the stationary growth phase.

View Article and Find Full Text PDF

Background: Insects living in nutritionally poor environments often establish long-term relationships with intracellular bacteria that supplement their diets and improve their adaptive and invasive powers. Even though these symbiotic associations have been extensively studied on physiological, ecological, and evolutionary levels, few studies have focused on the molecular dialogue between host and endosymbionts to identify genes and pathways involved in endosymbiosis control and dynamics throughout host development.

Results: We simultaneously analyzed host and endosymbiont gene expression during the life cycle of the cereal weevil Sitophilus oryzae, from larval stages to adults, with a particular emphasis on emerging adults where the endosymbiont Sodalis pierantonius experiences a contrasted growth-climax-elimination dynamics.

View Article and Find Full Text PDF

Dickeya are plant pathogenic bacteria able to provoke disease on a wide range of plants. A type 2 secretion system (T2SS) named Out is necessary for Dickeya virulence. Previous studies showed that the D.

View Article and Find Full Text PDF

Few secreted proteins involved in plant infection common to necrotrophic bacteria, fungi and oomycetes have been identified except for plant cell wall-degrading enzymes. Here we study a family of iron-binding proteins that is present in Gram-negative and Gram-positive bacteria, fungi, oomycetes and some animals. Homolog proteins in the phytopathogenic bacterium Dickeya dadantii (IbpS) and the fungal necrotroph Botrytis cinerea (BcIbp) are involved in plant infection.

View Article and Find Full Text PDF

The identification of the virulence factors of plant-pathogenic bacteria has relied on the testing of individual mutants on plants, a time-consuming process. Transposon sequencing (Tn-seq) is a very powerful method for the identification of the genes required for bacterial growth in their host. We used this method in a soft-rot pathogenic bacterium to identify the genes required for the multiplication of Dickeya dadantii in chicory.

View Article and Find Full Text PDF

O-polysaccharides were isolated from lipopolysaccharides obtained from four different strains of plant pathogenic bacteria belonging to the species Dickeya solani: two of them were isolated in Poland (IFB0099 and IFB0158), the third in Germany (IFB0223) and the last one, D. solani Type Strain IPO2222, originated from the Netherlands. In addition, the O-polysaccharide of a closely related species D.

View Article and Find Full Text PDF

Unlabelled: Modification of teichoic acid through the incorporation of d-alanine confers resistance in Gram-positive bacteria to antimicrobial peptides (AMPs). This process involves the products of the dltXABCD genes. These genes are widespread in Gram-positive bacteria, and they are also found in a few Gram-negative bacteria.

View Article and Find Full Text PDF

In the track of new biopesticides, four genes namely cytA, cytB, cytC and cytD encoding proteins homologous to Bacillus thuringiensis (Bt) Cyt toxins have been identified in the plant pathogenic bacteria Dickeya dadantii genome. Here we show that three Cyt-like δ-endotoxins from D. dadantii (CytA, CytB and CytC) are toxic to the pathogen of the pea aphid Acyrthosiphon pisum in terms of both mortality and growth rate.

View Article and Find Full Text PDF

Pectate lyases are enzymes involved in plant cell wall degradation. They cleave pectin using a β-elimination mechanism, specific for acidic polysaccharides. They are mainly produced by plant pathogens and plant-associated organisms, and only rarely by animals.

View Article and Find Full Text PDF

The phytopathogenic Gram-negative bacterium Dickeya dadantii (Erwinia chrysanthemi) feeds on plant cell walls by secreting pectinases and utilizing the oligogalacturanate products. An outer membrane porin, KdgM, is indispensable for the uptake of these acidic oligosaccharides. Here, the crystal structure of KdgM determined to 1.

View Article and Find Full Text PDF

Type II secretion systems (T2SSs) generally release their substrates into the culture medium. A few T2SS substrates remain anchored to or bound at the surface of the bacteria after secretion. Since they handle already folded proteins, T2SSs are the best way for bacteria to target, at their surface, proteins containing a cofactor, proteins that have to be folded in the cytoplasm or in the periplasm, or multimeric proteins.

View Article and Find Full Text PDF

The plant pathogenic bacterium Dickeya dadantii has recently been shown to be able to kill the aphid Acyrthosiphon pisum. While the factors required to cause plant disease are now well characterized, those required for insect pathogeny remain mostly unknown. To identify these factors, we analyzed the transcriptome of the bacteria isolated from infected aphids.

View Article and Find Full Text PDF

The twin arginine translocation (Tat) pathway exports folded proteins from the cytoplasm to the periplasm of bacteria. The targeting of the exported proteins to the Tat pathway relies on a specific amino-terminal signal sequence, which is cleaved after exportation. In the phytopathogen Dickeya dadantii, the pectin lyase homologue PnlH is exported by the Tat pathway without cleavage of its signal sequence, which anchors PnlH into the outer membrane.

View Article and Find Full Text PDF

Soft-rot Enterobacteriaceae (SRE), which belong to the genera Pectobacterium and Dickeya, consist mainly of broad host-range pathogens that cause wilt, rot, and blackleg diseases on a wide range of plants. They are found in plants, insects, soil, and water in agricultural regions worldwide. SRE encode all six known protein secretion systems present in gram-negative bacteria, and these systems are involved in attacking host plants and competing bacteria.

View Article and Find Full Text PDF

Dickeya dadantii (syn. Erwinia chrysanthemi) is a plant pathogenic bacteria that harbours a cluster of four horizontally-transferred, insect-specific toxin genes. It was recently shown to be capable of causing an acute infection in the pea aphid Acyrthosiphon pisum (Insecta: Hemiptera).

View Article and Find Full Text PDF

Fossil records indicate that life appeared in marine environments ∼3.5 billion years ago (Gyr) and transitioned to terrestrial ecosystems nearly 2.5 Gyr.

View Article and Find Full Text PDF

Dickeya dadantii is a plant-pathogenic enterobacterium responsible for the soft rot disease of many plants of economic importance. We present here the sequence of strain 3937, a strain widely used as a model system for research on the molecular biology and pathogenicity of this group of bacteria.

View Article and Find Full Text PDF

The plant pathogenic bacteria Dickeya dadantii is also a pathogen of the pea aphid Acyrthosiphon pisum. The genome of the bacteria contains four cyt genes, encoding homologues of Bacillus thuringiensis Cyt toxins, which are involved in its pathogenicity to insects. We show here that these genes are transcribed as an operon, and we determined the conditions necessary for their expression.

View Article and Find Full Text PDF

Sialic acids are acidic sugars present mostly on vertebrate cell surfaces, which can be metabolized by bacteria and act as an inflammation signal. N-Acetylneuraminic acid, the most abundant sialic acid, can enter into Escherichia coli K12 through NanC, an N-acetylneuraminic acid-inducible outer-membrane channel. With its 215 residues, NanC belongs to the family of small monomeric KdgM-related porins.

View Article and Find Full Text PDF

In Gram-negative bacteria, all the proteins destined for the outer membrane are synthesized with a signal sequence that is cleaved, either by the signal peptidase LepB for integral outer membrane proteins or by LspA for lipoproteins, when they cross the cytoplasmic membrane. The Dickeya dadantii protein PnlH does not possess a cleavable signal sequence but is anchored in the outer membrane by an N-terminal targeting signal. Addition of the 41 N-terminal amino acids of PnlH is sufficient for anchoring various hybrid proteins in the outer membrane.

View Article and Find Full Text PDF

We present the projection structures of the three outer membrane porins KdgM and KdgN from Erwinia chrysanthemi and NanC from Escherichia coli, based on 2D electron crystallography. A wide screening of 2D crystallization conditions yielded tubular crystals of a suitable size and quality to perform high-resolution electron microscopy. Data processing of untilted samples allowed us to separate the information of the two crystalline layers and resulted in projection maps to a resolution of up to 7A.

View Article and Find Full Text PDF

The entry of oligogalacturonates into Dickeya dadantii occurs through the specific channel KdgM. The genome of the bacterium encodes a second member of this family of outer membrane proteins, KdgN. We showed that this protein is also involved in the uptake of oligogalacturonates.

View Article and Find Full Text PDF

Dickeya dadantii (Erwinia chrysanthemi) is a phytopathogenic bacterium causing soft rot diseases on many crops. The sequencing of its genome identified four genes encoding homologues of the Cyt family of insecticidal toxins from Bacillus thuringiensis, which are not present in the close relative Pectobacterium carotovorum subsp. atrosepticum.

View Article and Find Full Text PDF

The Escherichia coli yjhA (renamed nanC) gene encodes a protein of the KdgM family of outer membrane-specific channels. It is transcribed divergently from fimB, a gene involved in the site-specific inversion of the region controlling transcription of the fimbrial structural genes but is separated from it by one of the largest intergenic regions in E. coli.

View Article and Find Full Text PDF

Following elucidation of the regulation of the lactose operon in Escherichia coli, studies on the metabolism of many sugars were initiated in the early 1960s. The catabolic pathways of D-gluconate and of the two hexuronates, D-glucuronate and D-galacturonate, were investigated. The post genomic era has renewed interest in the study of these sugar acids and allowed the complete characterization of the D-gluconate pathway and the discovery of the catabolic pathways for L-idonate, D-glucarate, galactarate, and ketogluconates.

View Article and Find Full Text PDF