Low serum folate levels are inversely related to metabolic associated fatty liver disease (MAFLD). The role of the folate transporter gene () was assessed to clarify its involvement in lipid accumulation during the onset of MAFLD in humans and in liver cells by genomic, transcriptomic, and metabolomic techniques. Genotypes of 3 SNPs in a case-control cohort were initially correlated to clinical and serum MAFLD markers.
View Article and Find Full Text PDFDrug-induced liver injury (DILI) is a serious worldwide health problem that accounts for more than 50% of acute liver failure. There is a great interest in clinical diagnosis and pharmaceutical industry to elucidate underlying molecular mechanisms and find noninvasive biomarkers for this pathology. Cell-secreted extracellular vesicles (EVs) have provided a new biological source to identify low disease invasive markers.
View Article and Find Full Text PDFThe assays in this study utilize mouse embryonic stem cells (mESCs) and zebrafish embryos to evaluate the potential developmental toxicity of industrial and pharmaceutical chemicals. A set of eleven chemicals of known mammalian in vivo teratogenicity were tested in the assays and correlations to mammalian data. Using mESCs, proliferation, differentiation, and cytotoxicity of the chemicals were measured.
View Article and Find Full Text PDFTo identify vascular disruptor compounds (VDCs), this study utilized an in vivo zebrafish embryo vascular model in conjunction with a mouse endothelial cell model to screen a subset of the U.S. Environmental Protection Agency (EPA) ToxCast Phase I chemical inventory.
View Article and Find Full Text PDFUnlabelled: Extracellular vesicles have created great interest as possible source of biomarkers for different biological processes and diseases. Although the biological function of these vesicles is not fully understood, it is clear that they participate in the removal of unnecessary cellular material and act as carriers of various macromolecules and signals between the cells. In this report, we analyzed the proteome of extracellular vesicles secreted by primary hepatocytes.
View Article and Find Full Text PDFThe discovery that the cells communicate through emission of vesicles has opened new opportunities for better understanding of physiological and pathological mechanisms. This discovery also provides a novel source for non-invasive disease biomarker research. Our group has previously reported that hepatocytes release extracellular vesicles with protein content reflecting the cell-type of origin.
View Article and Find Full Text PDFA key interest in clinical diagnosis and pharmaceutical industry is to have a repertoire of noninvasive biomarkers to-individually or in combination-be able to infer or predict the degree of liver injury caused by pathological conditions or drugs. Metabolomics-a comprehensive study of global metabolites-has become a highly sensitive and powerful tool for biomarker discovery thanks to recent technological advances. An ultra-performance liquid chromatography/time-of-flight tandem mass spectrometry (UPLC/TOF MS/MS)-based metabolomics approach was employed to investigate sera from galactosamine-treated rats to find potential biomarkers for acute liver injury.
View Article and Find Full Text PDFIn the last years, disease biomarker discovery has highly evolved thanks to the application of high--throughput technologies such as proteomics. However, due to the elevated complexity and abundance of some of the proteins in the samples the analysis of subcellular compartments has been revealed to be fundamental in order to identify underrepresented clinically relevant proteins. In this sense, extracellular microvesicles including exosomes that are present in different body fluids constitute a suitable and convenient subcellular compartment to identify disease biomarkers.
View Article and Find Full Text PDFHealthy blood plasma is required for several therapeutic procedures. To maximize successful therapeutic outcomes it is critical to control the quality of blood plasma. Clearly initiatives to improve the safety of blood transfusions will have a high economical and social impact.
View Article and Find Full Text PDFPurpose: There is a compelling clinical imperative to identify discerning molecular biomarkers of hepatic disease in order to inform the diagnosis, prognosis and treatment.
Experimental Design: We have investigated the proteome of urinary vesicles present in urine samples obtained from experimental models for the study of liver injury, as an approach for identifying potential biomarkers for hepatic disease.
Results: The biochemical and proteomic characterization of highly purified exosome-like urinary vesicles has identified 28 proteins previously unreported in these vesicles, and many that have been previously associated with diseases, such as the prion-related protein.
Importance Of The Field: Liver is the major body reservoir for enzymes involved in the metabolism of endogenous and xenobiotic compounds. Recently, it has been shown that hepatocytes release exosome-like vesicles to the extracellular medium, and the proteomic characterization of these hepatocyte-secreted exosomes has revealed the presence of several of these enzymes on them.
Areas Covered In This Review: A systematic bibliographic search focused on two related aspects: i) xenobiotic-metabolizing enzymes that have been detected in microvesicles (MVs); and ii) MVs that are in the blood stream or secreted by cell types with clear interactions with this fluid.
Background & Aims: Repair responses define the ultimate outcomes of liver disease. This study evaluated the hypothesis that fibrogenic repair in nonalcoholic fatty liver disease (NAFLD) is mediated by Hedgehog (Hh) pathway activation and consequent induction of epithelial-to-mesenchymal transitions (EMT) in ductular-type progenitors.
Methods: Immature ductular cells were exposed to Sonic hedgehog (Shh) in the presence or absence of the Hh inhibitor cyclopamine to determine whether Hh-pathway activation directly modulates EMT in liver progenitors.
Exosomes represent a discrete population of vesicles that are secreted from various cell types to the extracellular media. Their protein and lipid composition are a consequence of sorting events at the level of the multivesicular body, a central organelle which integrates endocytic and secretory pathways. Characterization of exosomes from different biological samples has shown the presence of common as well as cell-type specific proteins.
View Article and Find Full Text PDF