Publications by authors named "Condat C"

Oncostreams are self-organized structures formed by spindle-like, elongated, self-propelled cells recently described in glioblastomas and especially in gliosarcomas. Cells within these structures either move as large clusters in one main direction, flocks, or as linear, intermingling collections of cells advancing in opposite directions, streams. Round, passive cells are also observed, either inside or segregated from the oncostreams.

View Article and Find Full Text PDF

The growth of many solid tumors has been found to be driven by chemo- and radiotherapy-resistant cancer stem cells (CSCs). A suitable therapeutic avenue in these cases may involve the use of a differentiating agent (DA) to force the differentiation of the CSCs and of conventional therapies to eliminate the remaining differentiated cancer cells (DCCs). To describe the effects of a DA that reprograms CSCs into DCCs, we adapt a differential equation model developed to investigate tumorspheres, which are assumed to consist of jointly evolving CSC and DCC populations.

View Article and Find Full Text PDF

Background: Cancer stem cells are important for the development of many solid tumors. These cells receive promoting and inhibitory signals that depend on the nature of their environment (their niche) and determine cell dynamics. Mechanical stresses are crucial to the initiation and interpretation of these signals.

View Article and Find Full Text PDF

Organisms have evolved in a daily cyclic environment, developing circadian cell-autonomous clocks that temporally organize a wide range of biological processes. Translation is a highly regulated process mainly associated with the activity of microRNAs (miRNAs) at the translation initiation step that impacts on the molecular circadian clock dynamics. Recently, a molecular titration mechanism was proposed to explain the interactions between some miRNAs and their target mRNAs; new evidence also indicates that regulation by miRNA is a nonlinear process such that there is a threshold level of target mRNA below which protein production is drastically repressed.

View Article and Find Full Text PDF

The dynamics of a mosquito population depends heavily on climatic variables such as temperature and precipitation. Since climate change models predict that global warming will impact on the frequency and intensity of rainfall, it is important to understand how these variables affect the mosquito populations. We present a model of the dynamics of a Culex quinquefasciatus mosquito population that incorporates the effect of rainfall and use it to study the influence of the number of rainy days and the mean monthly precipitation on the maximum yearly abundance of mosquitoes M.

View Article and Find Full Text PDF

Many self-propelled microorganisms are attracted to surfaces. This makes their dynamics in restricted geometries very different from that observed in the bulk. Swimming along walls is beneficial for directing and sorting cells, but may be detrimental if homogeneous populations are desired, such as in counting microchambers.

View Article and Find Full Text PDF

Living beings display self-sustained daily rhythms in multiple biological processes, which persist in the absence of external cues since they are generated by endogenous circadian clocks. The period (per) gene is a central player within the core molecular mechanism for keeping circadian time in most animals. Recently, the modulation PER translation has been reported, both in mammals and flies, suggesting that translational regulation of clock components is important for the proper clock gene expression and molecular clock performance.

View Article and Find Full Text PDF

Tumor growth is often the result of the simultaneous development of two or more cancer cell populations. Crucial to the system evolution are the interactions between these populations. To obtain information about these interactions we apply the recently developed vector universality (VUN) formalism to various instances of competition between tumor populations.

View Article and Find Full Text PDF

The guidance of human sperm cells under confinement in quasi-2D microchambers is investigated using a purely physical method to control their distribution. Transport property measurements and simulations are performed with diluted sperm populations, for which effects of geometrical guidance and concentration are studied in detail. In particular, a trapping transition at convex angular wall features is identified and analyzed.

View Article and Find Full Text PDF

Marine microorganisms often reach high swimming speeds, either to take advantage of evanescent nutrient patches or to beat Brownian forces. Since this implies that a sizable part of their energetic budget must be allocated to motion, it is reasonable to assume that some fast-swimming microorganisms may increase their nutrient intake by increasing their speed v. We formulate a model to investigate this hypothesis and its consequences, finding the steady-state solutions and analyzing their stability.

View Article and Find Full Text PDF

It has been shown that a nanoliter chamber separated by a wall of asymmetric obstacles can lead to an inhomogeneous distribution of self-propelled microorganisms. Although it is well established that this rectification effect arises from the interaction between the swimmers and the noncentrosymmetric pillars, here we demonstrate numerically that its efficiency is strongly dependent on the detailed dynamics of the individual microorganism. In particular, for the case of run-and-tumble dynamics, the distribution of run lengths, the rotational diffusion, and the partial preservation of run orientation memory through a tumble are important factors when computing the rectification efficiency.

View Article and Find Full Text PDF

A surprising feature of many bacterial motors is the apparently conserved form of their torque-frequency relation. Experiments indicate that the torque provided by the bacterial rotary motor is approximately constant over a large range of angular speeds. This is observed in both monotrichous and peritrichous bacteria, independently of whether they are propelled by a proton flux or by a Na(+) ion flux.

View Article and Find Full Text PDF

We study how self-propelled organisms administer their energetic resources in order to optimize space exploration. Noting the existence of two very different time scales, we use a quasistatic approximation to analyze the relation between bacterial dynamics and changes in the energy stored by a bacterium. We then find both steady-state and time-dependent solutions for the bacterial speed and stored energy.

View Article and Find Full Text PDF

Different physical features of an organism are often measured concurrently, because their correlations can be used as predictors of longevity, future health, or adaptability to an ecological niche. Since, in general, we do not know a priori if the temporal variations in the measured quantities are causally related, it may be useful to have a method that could help us to identify possible correlations and to obtain parameters that may vary from population to population. In this paper we develop a procedure that may detect underlying relationships.

View Article and Find Full Text PDF

Being one of the world's neglected diseases, Chagas has neither a vaccine nor a satisfactory therapy. Inoculation of murine models with the ganglioside GM1 has shown a strikingly nonlinear effect, leading to a strong decrease in parasite load at low doses but reverting to a load increase at high doses. Cardiocyte destruction concomitant with the disease is also significantly reduced by a moderate application of GM1.

View Article and Find Full Text PDF

Cell shedding is an important step in the development of tumor invasion and metastasis. It influences growth saturation, latency, and tumor surface roughness. In spite of careful experiments carried out using multicellular tumor spheroids (MTS), the effects of the shedding process are not yet completely understood.

View Article and Find Full Text PDF
Cancer growth: predictions of a realistic model.

Phys Rev E Stat Nonlin Soft Matter Phys

August 2008

Simulations of avascular cancer growth are performed using experimental values of the relevant parameters. This permits a realistic assessment of the influence of these parameters on cancer growth dynamics. In general, an early exponential growth phase is followed by a linear regime (as observed in recent experiments), while the thickness of the viable cell layer remains approximately constant.

View Article and Find Full Text PDF

Although the second displacement moments for Lévy flights are not defined in their usual sense, a few years ago it was shown that nonextensive statistical mechanics can be used to define them for symmetric flights. Here it is shown that the displacement moments for long-jump asymmetric Lévy flights can also be regularized by calculating the averages in the form prescribed by nonextensive statistical mechanics. The dependence of the generalized diffusion coefficient on the asymmetry strength is investigated.

View Article and Find Full Text PDF

Cancer growth models may be divided into macroscopic models, which describe the tumor as a single entity, and microscopic ones, which consider the tumor as a complex system whose behavior emerges from the local dynamics of its basic components, the neoplastic cells. Mesoscopic models (e.g.

View Article and Find Full Text PDF

We present a model to describe the physics of chemoreception in processes determined by competitive ligand binding. Our model describes the competition between various populations, such as ligands vs. blockers and receptors vs.

View Article and Find Full Text PDF

Small bacteria are strongly buffeted by Brownian forces that make completely straight runs impossible. A model for bacterial motion is formulated in which the effects of fluctuational forces and torques on the run phase are taken into account by using coupled Langevin equations. An integrated description of the motion, including runs and tumbles, is then obtained by the use of convolution and Laplace transforms.

View Article and Find Full Text PDF

Multicellular tumor spheroids are valuable experimental tools in cancer research. By introducing an intermediate model, we have been able to successfully relate mesoscopic and macroscopic descriptions of spheroid growth. Since these descriptions stem from completely different roots (cell dynamics, and energy conservation and scaling arguments, respectively), their consistency validates both approaches and allows us to establish a direct correspondence between parameters characterizing processes occurring at different scales.

View Article and Find Full Text PDF

A recently proposed model for the competitive parasite-antibody interactions in Chagas disease is extended by separately describing the parasitic intracellular and extracellular phases. The model solutions faithfully reproduce available population data and yield predictions for parasite-induced cardiac cell damage.

View Article and Find Full Text PDF

A general feature of cancer growth is the cellular competition for available nutrients. This is also the case for tumor cords, neoplasms forming cylindrical structures around blood vessels. Experimental data show that, in their avascular phase, cords grow up to a limit radius of about 100 microm, reaching a quasi-steady-state characterized by a necrotized area separating the tumor from the surrounding healthy tissue.

View Article and Find Full Text PDF
Observability of stochastic resonance in neutron scattering.

Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics

October 1999

The observability of the stochastic resonance phenomenon in a neutron scattering experiment is investigated, considering that the scatterer can hop between two sites. Under stochastic resonance conditions scattered intensity is transferred from the quasielastic region to two inelastic peaks. The magnitude of the signal-to-noise ratio is shown to be similar to that arising in the corresponding power spectrum.

View Article and Find Full Text PDF