Publications by authors named "Concetta Giancola"

Despite its potential against several carcinomas, the pharmacological efficacy of silibinin (SLB) is hampered by poor solubility, absorption, and oral bioavailability. To face these issues, we developed polylactic-co-glycolic acid (PLGA) nanoparticles (NPs) coated with hydrophilic polyethene oxide (PEO) for controlled and targeted SLB delivery. NPs were produced at two different SLB loadings and presented a spherical shape with smooth surfaces and stable size in water and cell culture medium.

View Article and Find Full Text PDF

This study endeavored to overcome the physiological barriers hindering optimal bioavailability in ophthalmic therapeutics by devising drug delivery platforms that allow therapeutically effective drug concentrations in ocular tissues for prolonged times. Thermosensitive drug delivery platforms were formulated by blending poloxamers (F68 and F127) with low-molecular-weight hyaluronic acid (HA) in various concentrations and loaded with hydrocortisone (HC). Among the formulations examined, only three were deemed suitable based on their desirable gelling properties at a temperature close to the eye's surface conditions while also ensuring minimal gelation time for swift ocular application.

View Article and Find Full Text PDF

Biomembranes are a key component of all living systems. Most research on membranes is restricted to ambient physiological conditions. However, the influence of extreme conditions, such as the deep subsurface on Earth or extraterrestrial environments, is less well understood.

View Article and Find Full Text PDF

Despite numerous reports on the interactions of G-quadruplexes (G4s) with helicases, systematic analysis addressing the selectivity and specificity of each helicase towards a variety of G4 topologies are scarce. Among the helicases able to unwind G4s are those containing an iron-sulphur (FeS) cluster, including both the bacterial DinG (found in E. coli and several pathogenic bacteria) and the medically important eukaryotic homologues (XPD, FancJ, DDX11 and RTEL1).

View Article and Find Full Text PDF

Upon administration of nanoparticles, a protein corona forms on their surface and affects their half-life in circulation, biodistribution properties, and stability; in turn, the composition of the protein corona depends on the physico-chemical properties of the nanoparticles. We have previously observed lipid composition-dependent and microRNA delivery from lipid nanoparticles. Here, we carried out an extensive physico-chemical characterisation to understand the role of the lipid composition on the fate of lipid-based nanoparticles.

View Article and Find Full Text PDF

Two analogues of the MS3 aptamer, which was previously shown to have an exquisite capability to selectively bind and modulate the activity of mutant huntingtin (mHTT), have been here designed and evaluated in their physicochemical and biological properties. Featured by a distinctive propensity to form complex G-quadruplex structures, including large multimeric aggregates, the original 36-mer MS3 has been truncated to give a 33-mer (here named MS3-33) and a 17-mer (here named MS3-17). A combined use of different techniques (UV, CD, DSC, gel electrophoresis) allowed a detailed physicochemical characterization of these novel G-quadruplex-forming aptamers, tested in vitro on SH-SY5Y cells and in vivo on a Huntington's disease model, in which these shorter MS3-derived oligonucleotides proved to have improved bioactivity in comparison with the parent aptamer.

View Article and Find Full Text PDF

A set of guanine-rich aptamers able to preferentially recognize full-length huntingtin with an expanded polyglutamine tract has been recently identified, showing high efficacy in modulating the functions of the mutated protein in a variety of cell experiments. We here report a detailed biophysical characterization of the best aptamer in the series, named MS3, proved to adopt a stable, parallel G-quadruplex structure and show high nuclease resistance in serum. Confocal microscopy experiments on HeLa and SH-SY5Y cells, as models of non-neuronal and neuronal cells, respectively, showed a rapid, dose-dependent uptake of fluorescein-labelled MS3, demonstrating its effective internalization, even in the absence of transfecting agents, with no general cytotoxicity.

View Article and Find Full Text PDF

The promoter regions of important oncogenes such as and contain GC-rich sequences that can form distinctive noncanonical DNA structures involved in the regulation of transcription: G-quadruplexes on the G-rich strand and i-motifs on the C-rich strand. Interestingly, and promoter i-motifs are highly dynamic in nature and exist in a pH-dependent equilibrium with hairpin and even with hybrid i-motif/hairpin species. Herein, the effects of pH and presence of cell-mimicking molecular crowding conditions on conformational equilibria of the and i-motif-forming sequences were investigated by ultraviolet resonance Raman (UVRR) and circular dichroism (CD) spectroscopies.

View Article and Find Full Text PDF

The aim of this research is to obtain new data about the complexation between β-cyclodextrin (β-CD) and benzoic acid (BA) as a model reaction of the complex formation of hydrophobic molecules with cyclodextrins (CDs) in various media. This research may help developing cyclodextrin-based pharmaceutical formulations through the choice of the appropriate solvent mixture that may be employed in the industrial application aiming to control the reactions/processes in liquid phase. In this paper, NMR results for the molecular complex formation between BA and β-CD ([BA⊂β-CD]) in DO-DMSO- and in DO-EtOH have shown that the stability of the complex in the HO-DMSO- varies within the experimental error, while decreases in HO-EtOH.

View Article and Find Full Text PDF

Under slightly acidic conditions, cytosine-rich DNA sequences can form non-canonical secondary structures called i-motifs, which occur as four stretches of cytosine repeats form hemi-protonated C·C+ base pairs. The growing interest in the i-motif structures as important components in functional DNA-based nanotechnology or as potential targets of anticancer drugs, increases the need for a deep understanding of the energetics of their structural transitions. Here, a combination of spectroscopic and calorimetric techniques is used to unravel the thermodynamics of folding of an i-motif DNA under favorable conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy is a common cancer treatment, but issues like chemoresistance and tumor recurrence highlight the need for new, more effective drugs.
  • Researchers synthesized new hybrid compounds using a specific reaction that could potentially treat cancer, specifically targeting MCF-7 breast cancer cells.
  • The study found promising candidates that induce cancer cell death and potentially bind well to key anticancer targets, suggesting that these new compounds could lead to effective treatments.
View Article and Find Full Text PDF

DNA G-quadruplexes (G4s) form in relevant genomic regions and intervene in several biological processes, including the modulation of oncogenes expression, and are potential anticancer drug targets. The human proto-oncogene promoter region contains guanine-rich sequences able to fold into G4 structures. Here, by using circular dichroism and differential scanning calorimetry as complementary physicochemical methodologies, we compared the thermodynamic stability of the G4s formed by a shorter and a longer version of the promoter sequence, namely 5'-AGGGCGGTGTGGGAATAGGGAA-3' ( 22RT) and 5'-AGGGCGGTGTGGGAAGAGGGAAGAGGGGGAGG-3' ( 32R).

View Article and Find Full Text PDF

Nucleic acid aptamers are innovative and promising candidates to block the hallmark event in the prion diseases, that is the conversion of prion protein (PrP) into an abnormal form; however, they need chemical modifications for effective therapeutic activity. This communication reports on the development and biophysical characterization of a small library of chemically modified G-quadruplex-forming aptamers targeting the cellular PrP and the evaluation of their anti-prion activity. The results show the possibility of enhancing anti-prion aptamer properties through straightforward modifications.

View Article and Find Full Text PDF

Background: The JAK2 V617F variant is diagnostic for myeloproliferative neoplasms, a group of clonal disorders of hematopoietic stem and progenitor cells. Although several approaches have been developed to detect the variant, a gold standard diagnostic method has not yet been defined. We describe a simple, fast, and cost-effective PCR-based approach that enhances test specificity and sensitivity by blocking the amplification of the large excess of wild-type DNA.

View Article and Find Full Text PDF

The oncogene KRAS is involved in the pathogenesis of many tumors such as pancreatic, lung and colorectal cancers, thereby representing a relevant target for the treatment of these diseases. The KRAS P1 promoter contains a nuclease hypersensitive, guanine-rich sequence able to fold into a G-quadruplex motif (G4). The stabilization of this G4 structure by small molecules is emerging as a feasible approach to downregulate KRAS expression.

View Article and Find Full Text PDF

G-Quadruplexes (G4s) are noncanonical nucleic acid structures involved in the regulation of several biological processes of many organisms. The rational design of G4-targeting molecules developed as potential anticancer and antiviral therapeutics is a complex problem intrinsically due to the structural polymorphism of these peculiar DNA structures. The aim of the present work is to show how Ultraviolet Resonance Raman (UVRR) spectroscopy can complement other techniques in providing valuable information about ligand/G4 interactions in solution.

View Article and Find Full Text PDF

Background: The G-quadruplex-forming sequence within the KRAS proto-oncogene P1 promoter is a promising target for anticancer therapy. Porphyrin derivatives are among the most rewarding G-quadruplex binders. They can also behave as photosensitizers.

View Article and Find Full Text PDF

The G-quadruplex-forming telomeric sequence (TTAGGG)4TT was investigated by polarized Ultraviolet Resonance Raman Scattering (UVRR) at 266 nm. The presence of 40% poly(ethylene glycol) and the so-called "self-crowding" condition were used to induce the hybrid-to-parallel topology transition. Analysis of frequency shifts with temperature showed the role of several functional groups in the topological transitions and provides structural dynamical information.

View Article and Find Full Text PDF

Huntington's disease is a dreadful, incurable disorder. It springs from the autosomal dominant mutation in the first exon of the HTT gene, which encodes for the huntingtin protein (HTT) and results in progressive neurodegeneration. Thus far, all the attempted approaches to tackle the mutant HTT-induced toxicity causing this disease have failed.

View Article and Find Full Text PDF

Harmine belongs to a group of β-carboline alkaloids endowed with antitumor properties. Harmine and its derivatives are thought to bind to DNA and interfere with topoisomerase activities. We investigated the base-dependent binding of harmine, and three of its synthetic anticancer-active derivatives to the genomic DNA from calf thymus and two synthetic 20-mer double helices, the poly(dG-dC)·poly(dG-dC) and the poly(dA-dT)·poly(dA-dT), by means of UV-Vis and circular dichroism (CD) spectroscopies.

View Article and Find Full Text PDF

Background: G-quadruplex (G4) structures are key elements in the regulation of cancer cell proliferation and their targeting is deemed to be a promising strategy in anticancer therapy.

Methods: A tandem application of ligand-based virtual screening (VS) calculations together with the experimental G-quadruplex on Oligo Affinity Support (G4-OAS) assay was employed to discover novel G4-targeting compounds. The interaction of the selected compounds with the investigated G4 in solution was analysed through a series of biophysical techniques and their biological activity investigated by immunofluorescence and MTT assays.

View Article and Find Full Text PDF
Article Synopsis
  • Targeted therapies face challenges in medicine, and a new methodology using Isothermal Titration Calorimetry (ITC) with biocompatible microparticles aims to quantify receptor numbers on cell membranes and analyze receptor-ligand binding energetics.
  • The study used bEnd3 cells as a model for brain endothelial cells to represent the blood-brain barrier, comparing them to human umbilical vein cells (HUVEC).
  • The findings show a significantly higher number of transferrin receptors on bEnd3 cells, indicating potential for identifying drug targets and improving therapeutic delivery across biological barriers like the blood-brain barrier.
View Article and Find Full Text PDF

In the last decades, nano-oncologicals bearing a polyethylene glycol (PEG) coating are being emerging as biomimetic devices able to drive their drug cargo to solid tumors through passive mechanisms. To improve selectivity toward cancer cells, nanocarriers decorated with the small ligand folate have been widely investigated. Nevertheless, a great challenge remains the effective exposition of folate on nanoparticles (NPs), which is a key prerequisite to ensure the correct binding to receptor and the following endocytic uptake.

View Article and Find Full Text PDF

As part of the genome, human telomeric regions can be damaged by the chemically reactive molecules responsible for oxidative DNA damage. Considering that G-quadruplex structures have been proven to occur in human telomere regions, several studies have been devoted to investigating the effect of oxidation products on the properties of these structures. However only investigations concerning the presence in G-quadruplexes of the main oxidation products of deoxyguanosine and deoxyadenosine have appeared in the literature.

View Article and Find Full Text PDF