The "Cell Cycle Hypothesis" suggests that the abnormal re-entry of neurons into the cell division cycle leads to neurodegeneration, a mechanism supported by in vitro studies on neuronal-like cells treated with the hyperphosphorylating agent forskolin. Pterostilbene, a bioavailable compound found in foods such as blueberries and grapes, may exert neuroprotective effects and could serve as a potential adjunct therapy for neurodegenerative diseases. .
View Article and Find Full Text PDFProtein phosphatase 2A (PP2A) is a family of multifunctional enzymatic complexes crucial for cellular signalling, playing a pivotal role in brain function and development. Mutations in specific genes encoding PP2A complexes have been associated with neurodevelopmental disorders with hypotonia and high risk of seizures. In the current work, we present an individual with specific learning problems, motor coordination disorders, hypotonia and behavioural issues.
View Article and Find Full Text PDFHypoxic-ischemic brain damage presents a significant neurological challenge, often manifesting during the perinatal period. Specifically, periventricular leukomalacia (PVL) is emerging as a notable contributor to cerebral palsy and intellectual disabilities. It compromises cerebral microcirculation, resulting in insufficient oxygen or blood flow to the periventricular region of the brain.
View Article and Find Full Text PDFThe Krüppel-like factor (KLF) family represents a group of transcription factors (TFs) performing different biological processes that are crucial for proper neuronal function, including neuronal development, synaptic plasticity, and neuronal survival. As reported, genetic variants within the KLF family have been associated with a wide spectrum of neurodevelopmental and psychiatric symptoms. In a patient exhibiting attention deficit hyperactivity disorder (ADHD) combined with both neurodevelopmental and psychiatric symptoms, whole-exome sequencing (WES) analysis revealed a de novo heterozygous variant within the Krüppel-like factor 13 () gene, which belongs to the KLF family and regulates axonal growth, development, and regeneration in mice.
View Article and Find Full Text PDF() genes, a recently discovered gene family, play crucial roles in the regulation of neuronal stem cell proliferation and glial differentiation during nervous system development and neurogenesis. Whole exome sequencing (WES) in patients presenting with generalized epilepsy, intellectual disability, and childhood emotional behavioral disorder, uncovered a variation within gene. Notably, this gene has never been associated with neurodevelopmental disorders.
View Article and Find Full Text PDFE3 ubiquitin protein ligase encoded by ARIH2 gene catalyses the ubiquitination of target proteins and plays a crucial role in posttranslational modifications across various cellular processes. As prior documented, mutations in genes involved in the ubiquitination process are often associated with autism spectrum disorder (ASD) and/or intellectual disability (ID). In the current study, a de novo heterozygous mutation was identified in the splicing intronic region adjacent to the last exon of the ARIH2 gene using whole exome sequencing (WES).
View Article and Find Full Text PDFThe most significant genetic influence on eye color pigmentation is attributed to the intronic SNP rs12913832 in the gene, which interacts with the promoter region of the contiguous gene. This interaction, through the formation of a chromatin loop, modulates the transcriptional activity of , directly affecting eye color pigmentation. Recent advancements in technology have elucidated the precise spatial organization of the genome within the cell nucleus, with chromatin architecture playing a pivotal role in regulating various genome functions.
View Article and Find Full Text PDFChromosomal translocations can result in phenotypic effects of varying severity, depending on the position of the breakpoints and the rearrangement of genes within the interphase nucleus of the translocated chromosome regions. Balanced translocations are often asymptomatic phenotypically and are typically detected due to a decrease in fertility resulting from issues during meiosis. Robertsonian translocations are among the most common chromosomal abnormalities, often asymptomatic, and can persist in the population as a normal polymorphism.
View Article and Find Full Text PDFActivity-dependent neuroprotective protein (ADNP) is a neuroprotective protein essential for embryonic development, proper brain development, and neuronal plasticity. Its mutation causes the autism-like ADNP syndrome (also called the Helsmoortel-Van der Aa syndrome), characterized by neural developmental disorders and motor dysfunctions. Similar to the ADNP syndrome, the haploinsufficient mouse shows low synapse density, leading to motor and cognitive ability delays.
View Article and Find Full Text PDFThe UNC-5 family of netrin receptor genes, predominantly expressed in brain tissues, plays a pivotal role in various neuronal processes. Mutations in genes involved in axon development contribute to a wide spectrum of human diseases, including developmental, neuropsychiatric, and neurodegenerative disorders. The NTN1/DCC signaling pathway, interacting with UNC5C, plays a crucial role in central nervous system axon guidance and has been associated with psychiatric disorders during adolescence in humans.
View Article and Find Full Text PDFChromosomal rearrangements have been shown to alter genome organization, consequently having an impact on gene expression. Studies on certain types of leukemia have shown that gene expression can be exacerbated by the altered nuclear positioning of fusion genes arising from chromosomal translocations. However, studies on lymphoma have been, so far, very limited.
View Article and Find Full Text PDFIon channelopathies result from impaired ion channel protein function, due to mutations affecting ion transport across cell membranes. Over 40 diseases, including neuropathy, pain, migraine, epilepsy, and ataxia, are associated with ion channelopathies, impacting electrically excitable tissues and significantly affecting skeletal muscle. Gene mutations affecting transmembrane ionic flow are strongly linked to skeletal muscle disorders, particularly myopathies, disrupting muscle excitability and contraction.
View Article and Find Full Text PDFAmyotrophic lateral Sclerosis (ALS) is a neurodegenerative disease characterized by progressive degeneration of motor neurons in the central nervous system. Mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1) account for approximately in 20% of familial ALS cases. The pathological mechanisms underlying the toxicity induced by mutated SOD1 are still unknown.
View Article and Find Full Text PDFDiabetic keratopathy (DK) is the major complication of the cornea characterizing diabetes-affected patients. This ocular pathology is correlated with the hyperglycemic state leading to delayed corneal wound healing and recurrent corneal ulcers. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with widespread distribution throughout the body, and exerting cytoprotective effects in the neural and non-neuronal parts of the eye, including the cornea.
View Article and Find Full Text PDFA characteristic hallmark of Alzheimer's disease (AD) is the intracellular accumulation of hyperphosphorylated tau protein, a phenomenon that appears to have associations with oxidative stress, double-stranded DNA breakage, and the de-condensation of heterochromatin. Re-entry into the cell division cycle appears to be involved in the onset of this neurodegenerative process. Indeed, the cell cycle cannot proceed regularly in the differentiated neurons leading to cell death.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is a long-known complex neurodevelopmental disorder, and over the past decades, with the enhancement of the research genomic techniques, has been the object of intensive research activity, and many genes involved in the development and functioning of the central nervous system have been related to ASD genesis. Herein, we report a patient with severe ASD carrying a G > A de novo variant in the FGFR2 gene, determining a missense mutation. FGFR2 encodes for the ubiquitous fibroblast growth factor receptor (FGFR) type 2, a tyrosine kinase receptor implicated in several biological processes.
View Article and Find Full Text PDF: Specific Learning Disorder (SLD) is a complex neurobiological disorder characterized by a persistent difficult in reading (dyslexia), written expression (dysgraphia), and mathematics (dyscalculia). The hereditary and genetic component is one of the underlying causes of SLD, but the relationship between genes and the environment should be considered. Several genetic studies were performed in different populations to identify causative genes.
View Article and Find Full Text PDFIn recent decades, the use of genetic polymorphisms related to specific phenotypes, such as eye color, has greatly contributed to the development of the research field called forensic DNA phenotyping (FDP), enabling the investigators of crime cases to reduce the number of suspects, making their work faster and more precise. Eye color is a polygenic phenotype, and many genetic variants have been highlighted, with the major contributor being the locus, where many single nucleotide variations (SNPs) were identified. Interestingly, the locus, containing the intronic SNP rs12913832, the major eye color determinant, shows a high level of evolutionary conservation across many species of vertebrates.
View Article and Find Full Text PDFThe corneal epithelium, representing the outermost layer of the cornea, acts as a barrier to protect the eye against external insults such as ultraviolet B (UV-B) radiations. The inflammatory response induced by these adverse events can alter the corneal structure, leading to visual impairment. In a previous study, we demonstrated the positive effects of NAP, the active fragment of activity-dependent protein (ADNP), against oxidative stress induced by UV-B radiations.
View Article and Find Full Text PDF() gene, located in the short arm of chromosome 11, encodes for BHC80, a component of the Lysine Specific Demethylase 1, Corepressor of REST (LSD1-CoREST) complex. BHC80 is mainly expressed in the human fetal brain and skeletal muscle and acts as a modulator of several neuronal genes during embryogenesis. Data from literature relates variants with Potocki-Shaffer Syndrome (PSS), a contiguous gene deletion disorder caused by the haploinsufficiency of , , and genes.
View Article and Find Full Text PDFPoint mutations of the () gene are related with hereditary amyloidosis (hATTR). The number of people affected by this rare disease is only partially estimated. The real impact of somatic mosaicism and other genetic factors on expressivity, complexity, progression, and transmission of the disease should be better investigated.
View Article and Find Full Text PDFRecessive mutations in the POLR3A gene cause POLR3-HLD (the second-most-common form of childhood-onset hypomyelinating leukodystrophy), a neurodegenerative disorder featuring deficient cerebral myelin formation. To date, more than 140 POLR3A (NM_007055.3) missense mutations are related to the pathogenesis of POLR3-related leukodystrophy and spastic ataxia.
View Article and Find Full Text PDF