The increased costumers' request of safe and high-quality food products makes food traceability a priority for frauds identification and quality certification. Elemental profiling is one of the strategies used for food traceability, and TXRF spectroscopy is widely used in food analysis even if its potentialities have not been fully investigated. In this work, a new method for food traceability using directly TXRF spectra coupled with multivariate analyses, was tested.
View Article and Find Full Text PDFFire events can modify the distribution and speciation of potentially toxic elements (PTEs) in soil, especially if they are associated to organic matter (OM). In fact, OM can undergo substantial structural modifications at high temperatures, up to the complete mineralization. The present study aims to investigate the changes of PTEs' bioavailability to durum wheat (Triticum durum Desf.
View Article and Find Full Text PDFControlled or accidental fires can impact agricultural soils amended with composted organic materials since high temperatures cause fast organic matter (OM) mineralization and soil properties modifications. During these events, potentially toxic elements (PTEs) associated with OM can be released and change their distribution and speciation thus becoming a threat to the environment and to crops. In this study, we investigated the changes of distribution and speciation of chromium in soils long-term amended with compost obtained from tannery sludges, after simulating fires of different intensity (300, 400 and 500 °C) likely to occur on agricultural soils.
View Article and Find Full Text PDFZeolites are crystalline hydrated aluminosilicates, of natural or synthetic origin, characterized by a microporous structure and high adsorption properties. They are employed as soil amendments and fertilizer carriers in agriculture, as catalysts, detergents, adsorbents and molecular sieves in many chemical processes, as well as in water and soil decontamination, and in food processing. They have been also tested in the oenological field for several potential applications; yet an overview on such topic is not still available.
View Article and Find Full Text PDFFire events in agricultural soils can modify not only soil properties but also the structure of soil microbial communities, especially in soils containing high concentrations of potentially toxic elements (PTEs). The recolonization of burned soils can in fact favor the proliferation of certain microorganisms, more adaptable to post-fire soil conditions and higher PTE availability, over others. In this study, we simulated with laboratory experiments the microbial recolonization of an agricultural soil containing high Cr concentrations after heating at 500 °C for 30 min, to mimic the burning of crop residues.
View Article and Find Full Text PDFIn the last years, uncontrolled fires are frequently occurring in forest and agricultural areas as an indirect effect of the rising aridity and global warming or caused by intentional illegal burnings. In addition, controlled burning is still largely used by farmers as an agricultural practice in many parts of the world. During fire events, soil can reach very high temperatures at the soil surface, causing dramatic changes of soil properties and elements biogeochemistry.
View Article and Find Full Text PDFA combined approach based on multiple X-ray analytical techniques and conventional methods was adopted to investigate the distribution and speciation of Cr in a polluted agricultural soil, from the bulk-scale down to the (sub)micro-level. Soil samples were collected from two different points, together with a control sample taken from a nearby unpolluted site. The bulk characterization revealed that the polluted soils contained much higher concentrations of organic matter (OM) and potentially toxic elements (PTE) than the control.
View Article and Find Full Text PDFMicrogreens are an emerging class of vegetables, which have become increasingly important in the agri-food market in recent years, and contain a number of macro- and micro-nutrients. This paper presents a rapid method for the elemental analysis of microgreens based on total reflection X-ray fluorescence (TXRF) spectroscopy, without preliminary sample digestion. The following elements were detected and quantified simultaneously for six microgreen genotypes, belonging to Asteraceae and Brassicaceae: P, S, K, Ca, Cl, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr.
View Article and Find Full Text PDFBesides the variety of colours and flavours, microgreens show interesting nutritional properties, mainly regarding their contents of mineral nutrients and bioactive compounds. To date, the literature has prevalently focused on the individual nutritional features of microgreens usually belonging to Brassicaceae. The present study reports an articulated nutritional profile of six genotypes of microgreens, belonging to three species and two families: chicory (Cichorium intybus L.
View Article and Find Full Text PDFZinc (Zn) is a common heavy metal in polluted soils, as it is a widespread pollutant deriving both from natural sources and anthropogenic activities. The antioxidant tolerance/defence mechanisms against oxidative stress induced by subtoxic concentrations of Zn (50 and 150 μM ZnSO) were studied in a widespread edible plant (lettuce; Lactuca sativa L.) and in an important model plant (Arabidopsis thaliana (L.
View Article and Find Full Text PDFHexavalent chromium was stabilized in soil by using a mixture of glass and aluminum recovered from municipal solid wastes under alkaline hydrothermal conditions. Cr(VI) concentration was reduced by 94-98% already after 7days of treatment. After the same period, more than 90% of total Cr was stabilized in highly recalcitrant and scarcely mobile chemical forms, with 50% in the residual fraction (when the samples were treated at 1/10w/w mixture/soil ratio).
View Article and Find Full Text PDFCompost has been recently suggested as an alternative to peat for the preparation of growing substrates in soilless cultivation systems. However, some physico-chemical properties of compost may reduce plant performance and endanger the quality of productions, in particular for possible heavy metal accumulation in edible parts. This study aims at evaluating the suitability of a municipal solid waste compost (MSWC) and a sewage sludge compost (SSC) as components of growing media for the soilless cultivation of lettuce (Lactuca sativa L.
View Article and Find Full Text PDFThis study was carried out in two olive orchards (Olea europaea L., cv. Chemlali) located in a polluted area near a fertilizers factory and in a control unpolluted site, managed with similar cultivation techniques.
View Article and Find Full Text PDFA new screening strategy using Petri dishes with a gradient of distances between germinating seeds and a metal-contaminated medium was used for studying alterations in root architecture and morphology of Arabidopsis thaliana treated with cadmium, copper and zinc at sub-toxic concentrations. Metal concentrations in the dishes were determined by anodic stripping voltammetry on digested agar samples collected along the gradient, and kriging statistical interpolation method was performed. After two weeks, all agar dishes were scanned at high resolution and the root systems analyzed.
View Article and Find Full Text PDF