Background: Plasma neurofilament light chain (NFL) has been measured as a biomarker of neuronal damage in various neurological disorders. Elevated tau and β-amyloid levels have been found in patients with fibromyalgia (FM). The aim of the present study was to compare plasma neurofilament levels in fibromyalgia patients with normal controls and to investigate the correlation with clinical features and cognitive tests.
View Article and Find Full Text PDFDespite of the major role of aquaporin (AQP) water channels in controlling transmembrane water fluxes, alternative ways for modulating water permeation have been proposed. In the Central Nervous System (CNS), Aquaporin-4 (AQP4) is reported to be functionally coupled with the calcium-channel Transient-Receptor Potential Vanilloid member-4 (TRPV4), which is controversially involved in cell volume regulation mechanisms and water transport dynamics. The present work aims to investigate the selective role of TRPV4 in regulating plasma membrane water permeability in an AQP4-independent way.
View Article and Find Full Text PDFAutism spectrum disorder (ASD) is one of the most common neurodevelopment disorders, characterized by a multifactorial etiology based on the interaction of genetic and environmental factors. Recent evidence supports the neurobiological hypothesis based on neuroinflammation theory. To date, there are no sufficiently validated diagnostic and prognostic biomarkers for ASD.
View Article and Find Full Text PDFAlthough cladribine induces sustained reductions in peripheral T and B lymphocytes, little is known about its effect on axonal damage reduction in multiple sclerosis (MS), which could be demonstrated by assessing the serum neurofilament light chain (sNfL) levels. We investigated the reduction/reconstitution of different lymphocyte subsets (LS) by verifying the correlation with no evidence of disease activity (NEDA) and the variation in sNfL levels during cladribine treatment. We analysed 33 highly active relapsing MS patients and followed them up for 12 ± 3.
View Article and Find Full Text PDFAutism Spectrum Disorder (ASD) is a heterogeneous neurodevelopmental disorder characterized by a complex pathogenesis, by impairment social communication and interaction, and may also manifest repetitive patterns of behavior. Many studies have recognized an alteration of the immune response as a major etiological component in ASDs. Despite this, it is still unclear the variation of the function of the immune response.
View Article and Find Full Text PDFBackground: Cladribine (2-CdA) can cross the blood-brain barrier, resulting in inhibition of DNA synthesis and repair and disruption of cellular proliferation in actively dividing lymphocytes. No data on effect on neurons are available.
Aim: To study "in vitro" 2-CdA apoptotic effects on neurons in healthy donor and multiple sclerosis patient lymphocytes.
Aquaporin-1 (AQP1) is a proangiogenic water channel protein promoting endothelial cell migration. We previously reported that AQP1 silencing by RNA interference reduces angiogenesis-dependent primary tumour growth in a mouse model of melanoma. In this study, we tested the hypothesis that AQP1 inhibition also affects animal survival and lung nodule formation.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
March 2017
Aquaporin-4 (AQP4) is the CNS water channel organized into well-ordered protein aggregates called Orthogonal Arrays of Particles (OAPs). Neuromyelitis Optica (NMO) is an autoimmune disease caused by anti-OAP autoantibodies (AQP4-IgG). Molecular Dynamics (MD) simulations have identified an H-bond between L53 and T56 as the key for AQP4 epitope and therefore of potential interest for drug design in NMO field.
View Article and Find Full Text PDFRegulatory volume decrease (RVD) is a process by which cells restore their original volume in response to swelling. In this study, we have focused on the role played by two different Aquaporins (AQPs), Aquaporin-4 (AQP4), and Aquaporin-1 (AQP1), in triggering RVD and in mediating calcium signaling in astrocytes under hypotonic stimulus. Using biophysical techniques to measure water flux through the plasma membrane of wild-type (WT) and AQP4 knockout (KO) astrocytes and of an astrocyte cell line (DI TNC1) transfected with AQP4 or AQP1, we here show that AQP-mediated fast swelling kinetics play a key role in triggering and accelerating RVD.
View Article and Find Full Text PDF