The development of animal models of drug reward and addiction is an essential factor for progress in understanding the biological basis of this disorder and for the identification of new therapeutic targets. Depending on the component of reward to be studied, one type of animal model or another may be used. There are models of reinforcement based on the primary hedonic effect produced by the consumption of the addictive substance, such as the self-administration (SA) and intracranial self-stimulation (ICSS) paradigms, and there are models based on the component of reward related to associative learning and cognitive ability to make predictions about obtaining reward in the future, such as the conditioned place preference (CPP) paradigm.
View Article and Find Full Text PDFSocial stress modifies the activity of brain areas involved in the rewarding effects of psychostimulants, inducing neuroadaptations in the dopaminergic mesolimbic system and modifying the sensitivity of dopamine receptors. In the present study we evaluated the effect of the dopamine D- and D-like receptor antagonists (SCH23390 and raclopride, respectively) on the short-time effects of acute social defeat (ASD). Male OF1 mice were socially defeated before each conditioning session of the conditioned place preference (CPP) induced by 1mg/kg or 25mg/kg of cocaine plus the corresponding dopamine antagonist.
View Article and Find Full Text PDFDrug addiction shares brain mechanisms and molecular substrates with learning and memory processes, such as the stimulation of glutamate receptors and their downstream signalling pathways. In the present work we provide an up-to-date review of studies that have demonstrated the implication of the main memory-related calcium-dependent protein kinases in opiate and cocaine addiction. The effects of these drugs of abuse in different animal models of drug reward, dependence and addiction are altered by manipulation of the mitogen-activated protein kinase (MAPK) family, particularly extracellular signal regulated kinase (ERK), calcium/calmodulin-dependent kinase II (CaMKII), the protein kinase C (PKC) family (including PKMζ), cAMP-dependent protein kinase A (PKA), cGMP-dependent protein kinase G (PKG), the phosphatidylinositol 3-kinase (PI3K) pathway and its downstream target mammalian target of Rapamycin (mTOR), cyclin-dependent kinase 5 (Cdk5), heat-shock proteins (Hsp) and other enzymes and proteins.
View Article and Find Full Text PDFIn recent years, studies with animal models of reward, such as the intracranial self-stimulation, self-administration, and conditioned place preference paradigms, have increased our knowledge on the neurochemical substrates of the rewarding effects of 3,4-methylenedioxymetamphetamine (MDMA) in rodents. However, pharmacological and neuroimaging studies with human participants are scarce. Serotonin [5-hydroxytryptamine (5-HT)], dopamine (DA), endocannabinoids, and endogenous opiates are the main neurotransmitter systems involved in the rewarding effects of MDMA in rodents, but other neurotransmitters such as glutamate, acetylcholine, adenosine, and neurotensin are also involved.
View Article and Find Full Text PDFSome MDMA (3,4-methylenedioxymethamphetamine) users develop dependence as a result of chronic consumption. The present study evaluated the role of 5-hydroxytryptamine 5-HT₃ receptors in the acquisition, expression and reinstatement of the conditioned place preference (CPP) induced by MDMA. Adolescent male mice were conditioned with 10 mg/kg of MDMA and then treated with 1 or 3mg/kg of the 5-hydroxytryptamine 5-HT₃ antagonist MDL72222 during acquisition of conditioning (experiment 1), before expression of CPP in a post-conditioning test (experiment 2) or before a reinstatement test (experiment 3).
View Article and Find Full Text PDFBackground: The rewarding effects of 3,4-methylenedioxy-metamphetamine (MDMA) have been demonstrated in conditioned place preference (CPP) procedures, but the involvement of the dopaminergic system in MDMA-induced CPP and reinstatement is poorly understood.
Methodology/principal Findings: In this study, the effects of the DA D1 antagonist SCH 23390 (0.125 and 0.
Prog Neuropsychopharmacol Biol Psychiatry
February 2010
The present study employs a conditioned place preference procedure (CPP) to examine the effects of exposure to the cannabinoid agonist WIN 55212-2 (WIN) (0.1 and 0.5mg/kg) during adolescence on the reinforcing properties of +/-3,4-methylenedioxymetamphetamine hydrochloride (MDMA) (1.
View Article and Find Full Text PDFThe conditioned place preference (CPP) paradigm entails appetitive learning and is utilized to investigate the motivational effects of drug and natural reward in rodents. However, a typical CPP design does not allow dissociation between cue- and context-dependent appetitive learning. In humans, context and cues that had been associated with drug reward can elicit conditioned response and drug craving.
View Article and Find Full Text PDFNitric oxide (NO) produced by neuronal nitric oxide synthase (nNOS) has a role in synaptic plasticity, and evidence suggests its role in a range of effects produced by alcohol in the central nervous system. The aim of the current study was to investigate the role of the nNOS gene in the development of ethanol-induced conditioned place preference (CPP) in mice. The CPP paradigm is designed to investigate the reinforcing properties of drugs of abuse and the development of maladaptive behaviors, such as conditioned response to drug-associated stimuli, after repeated drug exposure.
View Article and Find Full Text PDF