Targeting phospholipid biosynthesis, specifically phosphatidylcholine (PC), which is enhanced in tumor cells, has been proven a suitable antitumor strategy. In fact, the overexpression of the choline kinase α1 (ChoKα1) isoform has been found in malignant cells and tumors, thus becoming an excellent antitumor target. ChoKα1 inhibitors are being synthesized at the present that show a large inhibitory activity.
View Article and Find Full Text PDFPurpose: The lack of specificity of conventional chemotherapy is one of the main difficulties to be solved in cancer therapy. Biomimetic magnetoliposomes are successful chemotherapy controlled-release systems, hyperthermia, and active targeting agents by functionalization of their surface with monoclonal antibodies. The membrane receptor Leucine-rich repeat-containing G-protein coupled receptor 5 (LGR5) stands out as colorectal cancer (CRC) biomarker and appears to be related to treatment resistance and the development of metastasis.
View Article and Find Full Text PDFIn cancer therapy, new therapeutic nanoformulations able to mediate targeted chemotherapy are required. Recently, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC, a magnetosome protein from Magnetococcus marinus MC-1, have proven, in vitro and in vivo, to be effective drug nanocarriers (following the application of an external gradient magnetic field) and to allow combination with hyperthermia. However, these nanoassemblies require further optimization to improve cytocompatibility, stability and active targeting ability.
View Article and Find Full Text PDFCrystallization in confined spaces is a widespread process in nature that also has important implications for the stability and durability of many man-made materials. It has been reported that confinement can alter essential crystallization events, such as nucleation and growth and, thus, have an impact on crystal size, polymorphism, morphology, and stability. Therefore, the study of nucleation in confined spaces can help us understand similar events that occur in nature, such as biomineralization, design new methods to control crystallization, and expand our knowledge in the field of crystallography.
View Article and Find Full Text PDFThe use of enzymes immobilized on magnetic nanoparticles to detect contaminants in aqueous samples has gained interest, since it allows the magnetic control, concentration and reuse of the enzymes. In this work, the detection of trace amounts of organophosphate pesticides (chlorpyrifos) and antibiotics (penicillin G) in water was attained by developing a nanoassembly formed by either inorganic or biomimetic magnetic nanoparticles used as substrates to immobilize acetylcholinesterase (AChE) and β-lactamase (BL). Other than the substrate, the optimization of the nanoassembly was done by testing enzyme immobilization both through electrostatic interaction (also reinforced with glutaraldehyde) and covalent bonds (by carbodiimide chemistry).
View Article and Find Full Text PDFThe use of nanoparticles in medicine is sometimes hampered by their potential to activate immune cells, eliciting inflammation or allergy. We investigated whether magnetic nanoparticles (MNPs) or biomimetic magnetic nanoparticles (BMNPs) affect relevant activities of human monocytes. We found that the nanoparticles neither elicited the production of pro-inflammatory mediators IL-6 and TNFα by resting monocytes (when BMNP dose < 300 μg/mL) nor enhanced their secretion induced by R848, a molecule engaging virus-recognizing receptors, or bacterial lipopolysaccharide (LPS).
View Article and Find Full Text PDFThe importance of egg natural defences to prevent bacterial contamination and their relation with hen age in extended production cycles were evaluated. Egg-white from eggs of different hen age groups (up 100-weeks-old) and lines (Hy-Line white and brown) were inoculated with Gram-positive Staphylococcus aureus or Gram-negative Salmonella Typhimurium, ranging from 10-10 CFU/mL. Our results show that concentrations of egg-white lysozyme and, particularly, ovotransferrin are important to modulate bacterial survival in a dose-dependent matter.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
Biominerals are important archives of the presence of life and environmental processes in the geological record. However, ascribing a clear biogenic nature to minerals with nanometer-sized dimensions has proven challenging. Identifying hallmark features of biologically controlled mineralization is particularly important for the case of magnetite crystals, resembling those produced by magnetotactic bacteria (MTB), which have been used as evidence of early prokaryotic life on Earth and in meteorites.
View Article and Find Full Text PDFImmobilization of enzymes has been extensively required in a wide variety of industrial applications as a way to ensure functionality and the potential of enzyme recycling after use. In particular, enzyme immobilization on magnetic nanoparticles (MNPs) could offer reusability by means of magnetic recovery and concentration, along with increased stability and robust activity of the enzyme under different physicochemical conditions. In the present work, microbial α-amylase (AmyKS) and xylanase (XAn11) were both immobilized on different types of MNPs [MamC-mediated biomimetic MNPs (BMNPs) and inorganic MNPs] by using two different strategies (electrostatic interaction and covalent bond).
View Article and Find Full Text PDFPharmaceutics
July 2021
MamC-mediated biomimetic magnetic nanoparticles (BMNPs) have emerged as one of the most promising nanomaterials due to their magnetic features (superparamagnetic character and large magnetic moment per particle), their novel surface properties determined by MamC, their biocompatibility and their ability as magnetic hyperthermia agents. However, the current clinical application of magnetic hyperthermia is limited due to the fact that, in order to be able to reach an effective temperature at the target site, relatively high nanoparticle concentration, as well as high magnetic field strength and/or AC frequency are needed. In the present study, the potential of BMNPs to increase the temperature upon irradiation of a laser beam in the near infrared, at a wavelength at which tissues become partially transparent, is explored.
View Article and Find Full Text PDFmagnetosome-associated protein MamC, expressed as recombinant, has been proven to mediate the formation of novel biomimetic magnetic nanoparticles (BMNPs) that are successful drug nanocarriers for targeted chemotherapy and hyperthermia agents. These BMNPs present several advantages over inorganic magnetic nanoparticles, such as larger sizes that allow the former to have larger magnetic moment per particle, and an isoelectric point at acidic pH values, which allows both the stable functionalization of BMNPs at physiological pH value and the molecule release at acidic (tumor) environments, simply based on electrostatic interactions. However, difficulties for BMNPs cell internalization still hold back the efficiency of these nanoparticles as drug nanocarriers and hyperthermia agents.
View Article and Find Full Text PDFBiomimetic magnetic nanoparticles mediated by magnetosome proteins (BMNPs) are potential innovative tools for cancer therapy since, besides being multifunctional platforms, they can be manipulated by an external gradient magnetic field (GMF) and/or an alternating magnetic field (AMF), mediating targeting and hyperthermia, respectively. We evaluated the cytocompatibility/cytotoxicity of BMNPs and Doxorubicin (DOXO)-BMNPs in the presence/absence of GMF in 4T1 and MCF-7 cells as well as their cellular uptake. We analyzed the biocompatibility and in vivo distribution of BMNPs as well as the effect of DOXO-BMNPs in BALB/c mice bearing 4T1 induced mammary carcinomas after applying GMF and AMF.
View Article and Find Full Text PDFPolymers (Basel)
August 2020
The design of novel nanomaterials that can be used as multifunctional platforms allowing the combination of therapies is gaining increased interest. Moreover, if this nanomaterial is intended for a targeted drug delivery, the use of several guidance methods to increase guidance efficiency is also crucial. Magnetic nanoparticles (MNPs) allow this combination of therapies and guidance strategies.
View Article and Find Full Text PDFRecent studies have shown the potential of magnetic hyperthermia in cancer treatments. However, the underlying mechanisms involved have not been yet fully described. In particular, the cell death related to magnetic hyperthermia observed in cultures incubated with low concentration of magnetic nanoparticles and under a low intensity alternating magnetic field, in which a macroscopic temperature rise is not observed, is still not understood.
View Article and Find Full Text PDFCurrent chemotherapy for colorectal cancer (CRC) includes the use of oxaliplatin (Oxa), a first-line cytotoxic drug which, in combination with irinotecan/5-fluorouracil or biologic agents, increases the survival rate of patients. However, the administration of this drug induces side effects that limit its application in patients, making it necessary to develop new tools for targeted chemotherapy. MamC-mediated biomimetic magnetic nanoparticles coupled with Oxa (Oxa-BMNPs) have been previously demonstrated to efficiently reduce the IC compared to that of soluble Oxa.
View Article and Find Full Text PDFBiomimetic magnetite nanoparticles (BMNPs) synthesized in the presence of MamC, a magnetosome-associated protein from Magnetoccus marinus MC-1, have gained interest for biomedical applications because of their unique magnetic properties. However, their behavior in biological systems, like their interaction with proteins, still has to be evaluated prior to their use in clinics. In this study, doxorubicin (DOXO) as a model drug was adsorbed onto BMNPs to form nanoassemblies.
View Article and Find Full Text PDFAn increasing concern for natural resources preservation and environmental safety is the removal of heavy metals from contaminated water. It is essential to develop simple procedures that use ecofriendly materials with high removal capacities. In this context, we have synthesized a new hybrid material in which eggshell membranes (ESMs) act as nucleation sites for magnetite nanoparticles (MNPs) precipitation in the presence of an external magnetic field.
View Article and Find Full Text PDFIn the field of Nanomedicine, there is an increasing demand for new inorganic nanophosphors with low cytotoxicity and efficient loading-release ability of drugs for applications in bioimaging and drug delivery. This work assesses the potentiality of matured Eu-doped citrate-coated carbonated apatite nanoparticles to be used as theranostic platforms, for bioimaging, as luminescent nanoprobes, and for drug delivery applications, using Doxorubicin as a model drug. The drug adsorption isotherm fits the Langmuir-Freundlich (LF) model, showing that the Eu:cit-cAp nanoparticles can carry a maximum of 0.
View Article and Find Full Text PDFRecently, liposomes have been explored as a potential solution to improve the biocompatibility and the colloidal stability of magnetic nanoparticles. Protocols have been developed for producing magnetoliposomes of magnetite nanoparticles obtained inorganically (MNPs). However, the biomimetic synthesis of magnetite using heterologous proteins from magnetotactic bacteria has become a real alternative to produce novel biomimetic magnetic nanoparticles (BMNPs).
View Article and Find Full Text PDFCholine kinase α1 (ChoKα1) has become an excellent antitumor target. Among all the inhibitors synthetized, the new compound Ff35 shows an excellent capacity to inhibit ChoKα1 activity. However, soluble Ff35 is also capable of inhibiting choline uptake, making the inhibitor not selective for ChoKα1.
View Article and Find Full Text PDFConventional chemotherapy against colorectal cancer (CRC), the third most common cancer in the world, includes oxaliplatin (Oxa) which induces serious unwanted side effects that limit the efficiency of treatment. Therefore, alternative therapeutic approaches are urgently required. In this work, biomimetic magnetic nanoparticles (BMNPs) mediated by MamC were coupled to Oxa to evaluate the potential of the Oxa-BMNP nanoassembly for directed local delivery of the drug as a proof of concept for the future development of targeted chemotherapy against CRC.
View Article and Find Full Text PDFThe role of magnetosome associated proteins on the in vitro synthesis of magnetite nanoparticles has gained interest, both to obtain a better understanding of the magnetosome biomineralization process and to be able to produce novel magnetosome-like biomimetic nanoparticles. Up to now, only one recombinant protein has been used at the time to in vitro form biomimetic magnetite precipitates, being that a scenario far enough from what probably occurs in the magnetosome. In the present study, both Mms6 and MamC from Magnetococcus marinus MC-1 have been used to in vitro form biomimetic magnetites.
View Article and Find Full Text PDF