The use of the soil can alter its functionality and influence the (bio)availability of any contaminants present. Our study considers two types of agricultural soils, rainfed and olive soils, managed according to conventional practices that apply contaminants directly to the soil (fertilizers, pesticides, fungicides, etc.) and receive contaminants from the atmosphere (traffic, industry, etc.
View Article and Find Full Text PDFAbandonment of vineyards after uprooting has dramatically increased in last decades in Mediterranean countries, often followed by vegetation expansion processes. Inadequate management strategies can have negative consequences on soil quality. We studied how the age and type of vegetation cover and several environmental characteristics (lithology, soil properties, vineyard slope and so on) after vineyard uprooting and abandonment contribute to the variation patterns in total, HAc (acetic acid-method, HAc) and EDTA-extractable (ethylenediaminetetraacetic acid-method) concentrations of Cd, Cu, Pb and Zn in soils.
View Article and Find Full Text PDFOrganic matter (OM) plays a key role in microbial response to soil metal contamination, yet little is known about how the composition of the OM affects this response in Mediterranean calcareous agricultural soils. A set of Mediterranean soils, with different contents and compositions of OM and carbonate and fine mineral fractions, was spiked with a mixture of Cd, Cu, Pb, and Zn and incubated for 12 months for aging. Microbial (Biolog Ecoplates) and enzyme activities (dehydrogenase, DHA; β-galactosidase, BGAL; phosphatase, PHOS; and urease, URE) were assessed and related to metal availability and soil physicochemical parameters.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2013
A set of periurban calcareous agricultural Mediterranean soils was spiked with a mixture of Cd, Cu, Pb and Zn at two levels within the limit values proposed by current European legislation, incubated for up to 12 months, and subjected to various one-step extraction procedures to estimate mobile (neutral salts) and potentially mobile metal fractions (complexing and acidic extraction methods). The results obtained were used to study metal extractability patterns according to the soil characteristics. The analytical data were coupled with mineralogical investigations and speciation modelling using the Visual Minteq model.
View Article and Find Full Text PDF