Functionalizing surfaces with self-assembled monolayers (SAMs) allows to efficiently bind bioreceptors, for instance, by bio-orthogonal click reactions, which is useful in biosensor fabrication. Control of the bioreceptor concentration on the surface can be achieved by coating an SAM mixture consisting of a functional SAM, which binds the bioreceptor, and a nonfunctional SAM for dilution. In this work, a novel vapor-based coating approach for the preparation of mixed SAM coatings is presented.
View Article and Find Full Text PDFThe broadening in photoelectron spectra of polymers can be attributed to several factors, such as light source spread, spectrometer resolution, the finite lifetime of the hole state, and solid-state effects. Here, for the first time, we set up a computational protocol to assess the peak broadening induced for both core and valence levels by solid-state effects in four amorphous polymers by using a combination of density functional theory, many-body perturbation theory, and classical polarizable embedding. We show that intrinsic local inhomogeneities in the electrostatic environment induce a Gaussian broadening of 0.
View Article and Find Full Text PDFThe blur caused by the nonzero mean free path of electrons in photoresists exposed by extreme ultraviolet lithography has detrimental consequences on patterning resolution, but its effect is difficult to quantify experimentally. So far, most mean free path calculations use the dielectric formalism, which is an approximation valid in the optical limit and fails at low kinetic energy. In this work, we used a modified substrate-overlayer technique that exploited the attenuation of the Si 2p core level originating specifically from the native silicon dioxide to evaluate the attenuation of electrons traveling through 2 and 4 nm of photoresist overlayers to provide a close estimation of the inelastic mean free path relevant for photoresist lithography patterning and for electron microscopy.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2023
We report a high-speed low dark current near-infrared (NIR) organic photodetector (OPD) on a silicon substrate with amorphous indium gallium zinc oxide (a-IGZO) as the electron transport layer (ETL). In-depth understanding of the origin of dark current is obtained using an elaborate set of characterization techniques, including temperature-dependent current-voltage measurements, current-based deep-level transient spectroscopy (Q-DLTS), and transient photovoltage decay measurements. These characterization results are complemented by energy band structures deduced from ultraviolet photoelectron spectroscopy.
View Article and Find Full Text PDFThe complexity of the water adsorption-desorption mechanism at the interface of transition metal dichalcogenides (TMDs) and its impact on their current transport are not yet fully understood. Here, our work investigates the swift intercalation of atmospheric adsorbates at the TMD and sapphire interface and between two TMD monolayers and probes its influence on their electrical properties. The adsorbates consist mainly of hydroxyl-based (OH) species in the subsurface region suggesting persistent water intercalation even under vacuum conditions, as determined by time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and scanning tunneling microscopy (STM).
View Article and Find Full Text PDFACS Appl Mater Interfaces
February 2023
The rush for better-performing electronics, and manufacturing processes that heavily rely on "top-down" patterning techniques, is making the integration of "self-aligned" fabrication methods, such as area-selective deposition (ASD), a critical objective for continued device scaling. The fully self-aligned via (FSAV) scheme is broadly proposed as a "killer application" to determine whether ASD can shift from an R&D process to high-volume manufacturing. Nevertheless, the lack of a suitable low-κ deposition process has prevented the realization of FSAV by dielectric-on-dielectric ASD.
View Article and Find Full Text PDFWe propose a simple additive approach to simulate X-ray photoelectron spectra (XPS) of macromolecules based on the method. Single-shot () is a promising technique to compute accurate core-electron binding energies (BEs). However, its application to large molecules is still unfeasible.
View Article and Find Full Text PDFVolatile A-cation halide (AX) additives such as formamidinium chloride and methylammonium chloride have been widely employed for high-efficiency perovskite solar cells (PSCs). However, it remains unstudied how they influence the perovskite film stoichiometry and the solar cell performance and operational stability. Hereby, our work shows that over annealing of formamidinium chloride-containing perovskite films leads to a Pb-rich surface, resulting in a high initial efficiency, which however decays during maximum power point tracking (MPPT).
View Article and Find Full Text PDFWith the continuous miniaturization and increasing complexity of the devices used in nanotechnology, there is a pressing need for characterization techniques with nm-scale 3D-spatial resolution. Unfortunately, techniques like Secondary Ion Mass Spectrometry (SIMS) fail to reach the required lateral resolution. For this reason, new concepts and approaches, including the combination of different complementary techniques, have been developed in over the past years to try to overcome some of the challenges.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2019
For the integration of two-dimensional (2D) transition metal dichalcogenides (TMDC) with high-performance electronic systems, one of the greatest challenges is the realization of doping and comprehension of its mechanisms. Low-temperature atomic layer deposition of aluminum oxide is found to n-dope MoS and ReS but not WS. Based on electrical, optical, and chemical analyses, we propose and validate a hypothesis to explain the doping mechanism.
View Article and Find Full Text PDFThe increasing scientific and industry interest in 2D MX materials within the field of nanotechnology has made the single crystalline integration of large area van der Waals (vdW) layers on commercial substrates an important topic. The c-plane oriented (3D crystal) sapphire surface is believed to be an interesting substrate candidate for this challenging 2D/3D integration. Despite the many attempts that have been made, the yet incomplete understanding of vdW epitaxy still results in synthetic material that shows a crystallinity far too low compared to natural crystals that can be exfoliated onto commercial substrates.
View Article and Find Full Text PDFThe continuous demand for improved performance in energy storage is driving the evolution of Li-ion battery technology toward emerging battery architectures such as 3D all-solid-state microbatteries (ASB). Being based on solid-state ionic processes in thin films, these new energy storage devices require adequate materials analysis techniques to study ionic and electronic phenomena. This is key to facilitate their commercial introduction.
View Article and Find Full Text PDFNext generation Li-ion batteries require improved energy densities, power output and safety to satisfy the demands of emerging technologies. All solid state 3D thin-film batteries (ASB) based on nanoionics are considered as frontrunners to enable all this. In order to facilitate the introduction of this new architecture, a homogeneous electrochemical activity and a high ionic diffusivity of the electrodes is key.
View Article and Find Full Text PDFN-functionalized monolayers on silicon wafer substrates are prepared via the controlled vapor-phase deposition of 11-azidoundecyltrimethoxysilanes at reduced pressure and elevated temperature. The quality of the layer is assessed using contact angle, attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR), and ellipsometry measurements. At 60 °C, longer deposition times are needed to achieve monolayers with similar N density compared to depositions at 145 °C.
View Article and Find Full Text PDFMatern Child Health J
December 2017
Unlabelled: Objective To review fetal and infant deaths from women enrolled in Indianapolis Healthy Start using the National Fetal and Infant Mortality Review (FIMR) methods to provide strategies for prevention.
Methods: Marion County Public Health Department (MCPHD) FIMR staff identified and reviewed 22 fetal and infant deaths to Indianapolis Healthy Start program participants between 2005 and 2012. Trained FIMR nurses completed 13 of 20 maternal interviews and compiled case summaries of all deaths from the MCPHD FIMR database.
J Obstet Gynecol Neonatal Nurs
July 2018
Objective: To explore care experiences of women who used prescription or illicit opioids and experienced fetal or infant loss.
Design: A qualitative, descriptive design with secondary data analysis.
Setting: The Fetal and Infant Mortality Review program in an urban Midwestern county in the United States.
Two-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs) are of great interest for applications in nano-electronic devices. Their incorporation requires the deposition of nm-thin and continuous high-k dielectric layers on the 2D TMDs. Atomic layer deposition (ALD) of high-k dielectric layers is well established on Si surfaces: the importance of a high nucleation density for rapid layer closure is well known and the nucleation mechanisms have been thoroughly investigated.
View Article and Find Full Text PDFACS Appl Mater Interfaces
June 2016
An imperative factor in adapting GeSn as the channel material in CMOS technology, is the gate-oxide stack. The performance of GeSn transistors is degraded due to the high density of traps at the oxide-semiconductor interface. Several oxide-gate stacks have been pursued, and a midgap Dit obtained using the ac conductance method, is found in literature.
View Article and Find Full Text PDFSolution processed polymer (donor) and fullerene (acceptor) bulk heterojunctions are widely used as the photo active layer in organic solar cells. Intimate mixing of these two materials is essential for efficient charge separation and transport. Identifying relative positions of acceptor and donor rich regions in the bulk heterojunction with nanometer scale precision is crucial in understanding intricate details of operation.
View Article and Find Full Text PDFChem Commun (Camb)
November 2015
We demonstrate the impact of reducing agents for Chemical Vapor Deposition (CVD) and Atomic Layer Deposition (ALD) of WS2 from WF6 and H2S precursors. Nanocrystalline WS2 layers with a two-dimensional structure can be obtained at low deposition temperatures (300-450 °C) without using a template or anneal.
View Article and Find Full Text PDFMetal oxide transport layers have played a crucial role in recent progress in organic photovoltaic (OPV) device stability. Here, we measure the stability of inverted and encapsulated polythiophene:fullerene cells with MoO3/Ag/Al composite anode in operational conditions combining solar radiation and 65 °C. Performance loss of over 50% in the first 100 h of the aging is dominated by a drop in the short-circuit current (Jsc).
View Article and Find Full Text PDFThe immobilization of proteins on flat substrates plays an important role for a wide spectrum of applications in the fields of biology, medicine, and biochemistry, among others. An essential prerequisite for the use of proteins (e.g.
View Article and Find Full Text PDFAdsorption of proteins at interfaces is an ubiquitous phenomenon of prime importance. Layers of poly(ethylene oxide) (PEO) are widely used to repel proteins. Conversely, proteins were shown to adsorb deeply into brushes of poly(acrylic acid) (PAA), and their subsequent partial release could be triggered by a change of pH and/or ionic strength (I).
View Article and Find Full Text PDFComposition depth profiling of HfO(2) (2.5 nm)/SiON (1.6 nm)/Si(001) was performed by three diffetent analytical techniques: high-resolution Rutherford backscattering spectroscopy (HRBS), angle-resolved X-ray photoelectron spectroscopy (AR-XPS) and high-resolution elastic recoil detection (HR-ERD).
View Article and Find Full Text PDF