The increasing use of neuroimaging in clinical research has driven the creation of many large imaging datasets. However, these datasets often rely on inconsistent naming conventions in image file headers to describe acquisition, and time-consuming manual curation is necessary. Therefore, we sought to automate the process of classifying and organizing magnetic resonance imaging (MRI) data according to acquisition types common to the clinical routine, as well as automate the transformation of raw, unstructured images into Brain Imaging Data Structure (BIDS) datasets.
View Article and Find Full Text PDF