Publications by authors named "Con Sullivan"

The inflammatory response to viral infection in humans is a dynamic process with complex cell interactions that are governed by the immune system and influenced by both host and viral factors. Due to this complexity, the relative contributions of the virus and host factors are best studied using animal models. In this review, we describe how the zebrafish () has been used as a powerful model to study host-virus interactions and inflammation by combining robust forward and reverse genetic tools with imaging of transparent embryos and larvae.

View Article and Find Full Text PDF

Comparative functional genomic studies require the proper identification of gene orthologs to properly exploit animal biomedical research models. To identify gene orthologs, comprehensive, conserved gene synteny analyses are necessary to unwind gene histories that are convoluted by two rounds of early vertebrate genome duplication, and in the case of the teleosts, a third round, the teleost genome duplication (TGD). Recently, the genome of the spotted gar, a holostean outgroup to the teleosts that did not undergo this third genome duplication, was sequenced and applied as an orthology bridge to facilitate the identification of teleost orthologs to human genes and to enhance the power of teleosts as biomedical models.

View Article and Find Full Text PDF

Each year, seasonal influenza outbreaks profoundly affect societies worldwide. In spite of global efforts, influenza remains an intractable healthcare burden. The principle strategy to curtail infections is yearly vaccination.

View Article and Find Full Text PDF

Small freshwater fish models, especially zebrafish, offer advantages over traditional rodent models, including low maintenance and husbandry costs, high fecundity, genetic diversity, physiology similar to that of traditional biomedical models, and reduced animal welfare concerns. The Collaborative Workshop on Aquatic Models and 21st Century Toxicology was held at North Carolina State University on May 5-6, 2014, in Raleigh, North Carolina, USA. Participants discussed the ways in which small fish are being used as models to screen toxicants and understand mechanisms of toxicity.

View Article and Find Full Text PDF

In genome-wide studies, hundreds of thousands of hypothesis tests are performed simultaneously. Bonferroni correction and False Discovery Rate (FDR) can effectively control type I error but often yield a high false negative rate. We aim to develop a more powerful method to detect differentially expressed genes.

View Article and Find Full Text PDF

Humans and viruses have a long co-evolutionary history. Viral illnesses have and will continue to shape human history: from smallpox, to influenza, to HIV, and beyond. Animal models of human viral illnesses are needed in order to generate safe and effective antiviral medicines, adjuvant therapies, and vaccines.

View Article and Find Full Text PDF

The phagocyte respiratory burst is part of the innate immune response to pathogen infection and involves the production of reactive oxygen species (ROS). ROS are toxic and function to kill phagocytized microorganisms. In vivo quantification of phagocyte-derived ROS provides information regarding an organism's ability to mount a robust innate immune response.

View Article and Find Full Text PDF

FOXM1 is a critical regulator of the G1/S and G2/M cell cycle transitions, as well as of the mitotic spindle assembly. Previous studies have suggested that FOXM1 regulates CDC25A gene transcription, but the mechanism remains unknown. Here, we provide evidence that FOXM1 directly regulates CDC25A gene transcription via direct promoter binding and indirect activation of E2F-dependent pathways.

View Article and Find Full Text PDF

A therapeutic strategy for treating cancer is to target and eradicate cancer stem cells (CSCs) without harming their normal stem cell counterparts. The success of this approach relies on the identification of molecular pathways that selectively regulate CSC function. Using BCR-ABL-induced chronic myeloid leukemia (CML) as a disease model for CSCs, we show that BCR-ABL downregulates the Blk gene (encoding B-lymphoid kinase) through c-Myc in leukemic stem cells (LSCs) in CML mice and that Blk functions as a tumor suppressor in LSCs but does not affect normal hematopoietic stem cells (HSCs) or hematopoiesis.

View Article and Find Full Text PDF

Hematopoiesis is a tightly regulated biological process that relies upon complicated interactions between blood cells and their microenvironment to preserve the homeostatic balance of long-term hematopoietic stem cells (LT-HSCs), short-term HSCs (ST-HSCs), multipotent progenitors (MPPs), and differentiated cells. Adhesion molecules like P-selectin (encoded by the Selp gene) are essential to hematopoiesis, and their dysregulation has been linked to leukemogenesis. Like HSCs, leukemic stem cells (LSCs) depend upon their microenvironments for survival and propagation.

View Article and Find Full Text PDF

We have shown that Alox5 is a critical regulator of leukemia stem cells (LSCs) in a BCR-ABL-induced chronic myeloid leukemia (CML) mouse model, and we hypothesize that the Alox5 pathway represents a major molecular network that regulates LSC function. Therefore, we sought to dissect this pathway by comparing the gene expression profiles of wild type and Alox5(-/-) LSCs. DNA microarray analysis revealed a small group of candidate genes that exhibited changes in the levels of transcription in the absence of Alox5 expression.

View Article and Find Full Text PDF

Arsenic trioxide (ATO) is a first-line anti-cancer agent for acute promyelocytic leukemia, and induces apoptosis in other solid cancer cell lines including breast cancer cells. However, as with arsenites found in drinking water and used as raw materials for wood preservatives, insecticides, and herbicides, low doses of ATO can induce carcinogenesis after long-term exposure. At 24 h after exposure, ATO (0.

View Article and Find Full Text PDF

Inhibition of BCR-ABL with kinase inhibitors has become a well-accepted strategy for targeted therapy of Philadelphia-positive (Ph(+)) chronic myeloid leukemia (CML) and has been shown to be highly effective in controlling the disease. However, BCR-ABL kinase inhibitors do not efficiently kill leukemic stem cells (LSCs), indicating that this therapeutic strategy does not lead to a cure of CML. Development of curative therapies of CML require the identification of genes/pathways that play critical roles in survival and self-renewal of LSCs.

View Article and Find Full Text PDF

Chronic myeloid leukemia (CML) is induced by the BCR-ABL oncogene, a product of Philadelphia (Ph) chromosome. The BCR-ABL kinase inhibitor imatinib is a standard treatment for Ph+ leukemia, and has been shown to induce a complete hematologic and cytogenetic response in most chronic phrase CML patients. However, imatinib does not cure CML, and one of the reasons is that imatinib does not kill leukemia stem cells (LSCs) in CML both in vitro and in vivo.

View Article and Find Full Text PDF

Mammalian immune responses to LPS exposure are typified by the robust induction of NF-kappaB and IFN-beta responses largely mediated by TLR4 signal transduction pathways. In contrast to mammals, Tlr4 signal transduction pathways in nontetrapods are not well understood. Comprehensive syntenic and phylogenetic analyses support our hypothesis that zebrafish tlr4a and tlr4b genes are paralogous rather than orthologous to human TLR4.

View Article and Find Full Text PDF

The zebrafish, Danio rerio, has come to the forefront of biomedical research as a powerful model for the study of development, neurobiology, and genetics of humans. In recent years, use of the zebrafish system has extended into studies in behaviour, immunology and toxicology, retaining the concept that it will serve as a model for human disease. As one of the most thoroughly studied teleosts, with a wealth of genetic and genomic information available, the zebrafish is now being considered as a model for pathogen studies in finfishes.

View Article and Find Full Text PDF

In mammals, Toll-IL-1R-containing adaptor molecule 1 (TICAM1)-dependent TLR pathways induce NF-kappaB and IFN-beta responses. TICAM1 activates NF-kappaB through two different pathways involving its interactions with TNFR-associated factor 6 and receptor-interacting protein 1. It also activates IFN regulatory factor 3/7 through its interaction with TANK-binding kinase-1, leading to the robust up-regulation of IFN-beta.

View Article and Find Full Text PDF