We employ shot noise measurements to characterize the effective charge of quasiparticles, at filling factor nu=1/3 of the fractional quantum Hall regime, as they scatter from an array of identical weak backscatterers. Upon scattering, quasiparticles are known to bunch, e.g.
View Article and Find Full Text PDFShot noise measurements have been used to measure the charge of quasiparticles in the fractional quantum Hall (FQH) regime. To induce shot noise in an otherwise noiseless current of quasiparticles, a barrier is placed in its path to cause weak backscattering. The measured shot noise is proportional to the charge of the quasiparticles; for example, at filling factor v=1/3, noise corresponding to q=e/3 appears.
View Article and Find Full Text PDFThe charge of quasiparticles in a fractional quantum Hall (FQH) liquid, tunneling through a partly reflecting constriction with transmission t, was determined via shot noise measurements. In the nu = 1/3 FQH state, a charge smoothly evolving from e(*) = e/3 for t(1/3) congruent with 1 to e(*) = e for t(1/3)<<1 was determined, agreeing with chiral Luttinger liquid theory. In the nu = 2/5 FQH state the quasiparticle charge evolves smoothly from e(*) = e/5 at t(2/5) congruent with 1 to a maximum charge less than e(*) = e/3 at t(2/5)<<1.
View Article and Find Full Text PDF