Objective: To determine the replication kinetics and cytopathic effect (CPE) of feline calicivirus (FCV) in feline corneal epithelial cells (FCEC).
Animals Studied: Seven archived FCV isolates and one archived feline herpesvirus type 1 (FHV-1) isolate, previously obtained from eight domestic short hair cats.
Procedures: FCV RNA was extracted for sequencing using Illumina MiSeq, to identify three genomically diverse isolates for further testing.
Equid herpesvirus 4 (EHV-4) is a common respiratory pathogen in horses. It sporadically induces abortion or neonatal death. Although its contribution in neurological disorders is not clearly demonstrated, there is a strong suspicion of its involvement.
View Article and Find Full Text PDF(1) Background: equid alphaherpesvirus-1 (EHV-1) is a highly contagious viral pathogen prevalent in most horse populations worldwide. Genome-editing technologies such as CRISPR/Cas9 have become powerful tools for precise RNA-guided genome modifications; (2) Methods: we designed single guide RNAs (sgRNA) to target three essential (ORF30, ORF31, and ORF7) and one non-essential (ORF74) EHV-1 genes and determine their effect on viral replication dynamics ; (3) Results: we demonstrated that sgRNAs targeting essential lytic genes reduced EHV-1 replication, whereas those targeting ORF74 had a negligible effect. The sgRNAs targeting ORF30 showed the strongest effect on the suppression of EHV-1 replication, with a reduction in viral genomic copy numbers and infectious progeny virus output.
View Article and Find Full Text PDFFeline respiratory disease complex (FRDC) is caused by a wide range of viral and bacterial pathogens. Both Influenza A virus (IAV) and Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) also induce respiratory diseases in cats. Two one-step multiplex qPCR/RT-qPCR assays were developed and validated: FRA_1 (Feline respiratory assay 1) for the detection of four viral targets and FRA_2 for the detection of three bacteria associated with FRDC.
View Article and Find Full Text PDFCanine pneumovirus was detected by RT-qPCR in 2022 from nasal swabs collected from two dogs with upper respiratory disease in a shelter in Louisiana, United States. The genomes from the designated strains CPnV USA/LA/2022/124423 and USA/LA/2022/123696 were sequenced and show the closest similarity to the pneumonia virus of mice J3666.
View Article and Find Full Text PDFThe severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) was transmitted from humans to dogs and cats (reverse zoonosis) during the COVID-19 pandemic. SARS-CoV-2 has been detected in fecal samples of infected dogs and cats, indicating potential fecal-oral transmission, environmental contamination, and zoonotic transmission (i.e.
View Article and Find Full Text PDFCanine infectious respiratory disease complex (CIRDC) is the primary cause of respiratory disease in the canine population and is caused by a wide array of viruses and bacterial pathogens with coinfections being common. Since its recognition in late 2019, Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been reported to cause respiratory disease in dogs. Therefore, the rapid detection and differentiation of SARS-CoV-2 from other common viral and bacterial agents is critical from a public health standpoint.
View Article and Find Full Text PDFEquine rotavirus A (ERVA) is the leading cause of diarrhea in foals, with G3P[12] and G14P[12] genotypes being the most prevalent. Recently, equine G3-like RVA was recognized as an emerging infection in children, and a group B equine rotavirus (ERVB) was identified as an emergent cause of foal diarrhea in the US. Thus, there is a need to adapt molecular diagnostic tools for improved detection and surveillance to identify emerging strains, understand their molecular epidemiology, and inform future vaccine development.
View Article and Find Full Text PDFSeveral models were developed to study the pathogenicity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as well as the efficacy of vaccines and therapeutics. Since wild-type mice are naturally resistant to infection by ancestral SARS-CoV-2 strains, several transgenic mouse models expressing human angiotensin-converting enzyme 2 (hACE2) were developed. An alternative approach has been to develop mouse-adapted SARS-CoV-2 strains.
View Article and Find Full Text PDFEquid alphaherpesvirus-1 (EHV-1) is one of the main pathogens in horses, responsible for respiratory diseases, ocular diseases, abortions, neonatal foal death and neurological complications such as equine herpesvirus myeloencephalopathy (EHM). Current vaccines reduce the excretion and dissemination of the virus and, therefore, the extent of an epizooty. While their efficacy against EHV-1-induced abortion in pregnant mares and the decreased occurrence of an abortion storm in the field have been reported, their potential efficacy against the neurological form of disease remains undocumented.
View Article and Find Full Text PDFEquine arteritis virus (EAV) is the causative agent of equine viral arteritis (EVA), a respiratory, systemic, and reproductive disease of equids. Following natural infection, up to 70% of the infected stallions can remain persistently infected over 1 year (long-term persistent infection [LTPI]) and shed EAV in their semen. Thus, the LTP-infected stallions play a pivotal role in maintaining and perpetuating EAV in the equine population.
View Article and Find Full Text PDFData presented in this article are associated with the research article "Identification of antiviral compounds against equid herpesvirus-1 using real-time cell assay screening: efficacy of decitabine and valganciclovir alone and in combination" [1]. These data correspond to the screening of 2,891 potential antiviral compounds against equid herpesvirus-1 (EHV-1) based on impedance measurements using the xCELLigence® RTCA MP System. This dataset includes compounds from three different libraries: i) 1,199 compounds from the Prestwick® Chemical Library, which contains mostly US Food and Drug Administration approved drugs (Prestwick® Chemical, Illkirch, France); ii) 1,651 compounds from the Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN, Caen, France); iii) 41 compounds (called herein in-house antiviral library) selected for their effects against different human viruses.
View Article and Find Full Text PDFEquid herpesvirus 1 is one of the most common viral pathogens in the horse population and is associated with respiratory disease, abortion and still-birth, neonatal death and neurological disease. A single point mutation in the DNA polymerase gene (ORF30: A2254G, N752D) has been widely associated with neuropathogenicity of strains, although this association has not been exclusive. This study describes the fortuitous isolation of a strain carrying a new genotype C (H) from an outbreak in France that lasted several weeks in 2018 and involved 82 horses, two of which showed neurological signs of disease.
View Article and Find Full Text PDFEquid herpesvirus-1 infections cause respiratory, neurological and reproductive syndromes. Despite preventive treatments with vaccines, resurgence of EHV-1 infection still constitutes a major threat to equine industry. However, no antiviral compound is available to treat infected horses.
View Article and Find Full Text PDFEquid alpha-herpesviruses (EHV) are responsible for different diseases in equine population. EHV-1 causes respiratory diseases, abortions and nervous disorders, EHV-4 causes respiratory diseases and sporadic abortion, while EHV-3 is responsible of equine coital exanthema. In view of the lack of efficacy of vaccines against EHV-1 and EHV-4 and in the absence of vaccines against EHV-3, the use of antiviral treatment is of great interest.
View Article and Find Full Text PDF